
How does an electrical signal propagate 
in a neuron? Traditional cable theory, 
which was refined by Goldman, Hodgkin 
and Katz1,2, answered this question using 
a model that was based on the opening 
and closing of channels that are located on 
the surface of a thin cylinder. This model 
served as the foundation of our under­
standing of several fundamental aspects of 
neuronal physiology, such as local depo­
larizations, action potential generation 
and propagation and synaptic integration. 
This model can be safely applied to macro­
scopic structures, such as the squid giant 
axon. However, it assumes a lack of inter­
action between the local electric field and 
diffusional flux, an assumption that cannot 
be made for small neuronal microcompart­
ments, in which electrodiffusion is likely to 
be important. Moreover, local geometry at 
the submicron level has significant effects 
on the motion and distribution of charged 
species within the cell. These local con­
straints are starting to be experimentally 
addressed through new imaging methods 
that have opened a new frontier in elec­
trophysiology, allowing us to measure 

electrical phenomena within the micro­
compartments or nanocompartments of 
a neuron.

Here, we argue that traditional theoreti­
cal methods to analyse current flow that are 
based on the propagation of electrical cur­
rent in macroscopic cables, such as cable the­
ory and classical diffusion, are insufficient 
when examining small (nanoscale) compart­
ments of the cell. We examine the limita­
tions of traditional cable theory and use the 
dendritic spine as an example of a structure 
with nanoscale dimensions, although it is 
important to note that a similar argument 
can be made for any neuronal structure of 
similar dimensions. This may include small 
neuronal compartments (such as presynaptic 
vesicles or olfactory or hair-cell cilia), nar­
row astrocytic processes, thin axons and 
dendrites and the small neuronal processes 
found in invertebrate nervous systems. We 
discuss the need for novel theoretical and 
experimental frameworks that extend cable 
theory to understand and quantify current 
modulation in nanostructures and review 
of the use of the Poisson–Nernst–Planck 
(PNP) equation, electrodiffusion and 

spatial modelling to quantitatively under­
stand the biophysical processes taking place 
in neuronal subcompartments.

Cable theory and its assumptions
Classical cable theory was originally devel­
oped in the ninteenth century by Lord Kelvin 
to explain the flow of electricity in submarine 
cables and was adapted to describe nerve 
fibre conduction between the 1920s and 
the 1940s by Cole, Goldman, Hodgkin and 
Katz1–4. In cable theory, the resistances and 
capacitances of the cell membrane and the 
properties of the electrolytes that surround 
it are used to create a one-dimensional (1D) 
diffusion model equation that describes the 
propagation of an electric field in a conduct­
ing nerve fibre1. The solution of this model 
equation provides a precise estimate for how 
the electric field decays away from its initia­
tion site (the site of a synaptic input or of an 
electrode current injection), showing that 
relay channels along the neuronal mem­
brane are needed to regenerate the field and 
extend the propagation to greater distances5. 
Importantly, this framework was based on 
the assumption that there is electro-neutral­
ity within the neuron: that is, that there is a 
local equilibrium between negatively charged 
particles and positively charged particles 
[Au:OK?], so that their density is equal at 
each point.

This initial model was later expanded 
to take the influence of ion channels into 
account6. Various versions of the classical 
Hodgkin and Huxley (HH) model were cre­
ated, using estimated ionic dynamics that 
did not necessarily reflect the real biophysi­
cal motion of ions, to study the electrical 
conduction and excitability of neurons. 
These theoretical approaches were later 
exploited to characterize the functional 
properties of dendrites7, and transformed 
versions of HH models have often been 
used to study the excitability of neural net­
works8. It is thus fair to say that cable theory 
and modified versions of this theory have, 
over the decades, provided the theoretical 
foundations of cellular neurophysiology and 
given neuroscientists a means to understand 
the nervous system at different functional 
levels, from the excitability of ion channels 
to the description of neuronal ensembles.
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Abstract | Cable theory and the Goldman–Hodgkin–Huxley–Katz models for the 
propagation of ions and voltage within a neuron have provided a theoretical 
foundation for electrophysiology and been responsible for many cornerstone 
advances in neuroscience. However, these theories break down when they are 
applied to small neuronal compartments, such as dendritic spines, synaptic 
terminals or small neuronal processes, because they assume spatial and ionic 
homogeneity. Here we discuss a broader theory that incorporates the Poisson–
Nernst–Planck (PNP) approximation and electrodiffusion to more accurately 
model the constraints that neuronal nanostructures place on electrical current 
flow. This theory could advance our understanding of the physiology of neuronal 
nanocompartments.
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Nanophysiology: dendritic spines
Dendritic spines have a crucial role in neu­
ronal communication because they enable 
synaptic connections to be made with nano­
metre precision. In both pre- and postsynap­
tic structures of a synapse, the thousands of 
molecules that together generate and regu­
late synaptic currents, and the orchestrated 
behaviour of which is integral for cellular 
function, are precisely organized over spaces 

of less than one cubic micron9. Over the past 
20 years, it has become clear that the proper­
ties and behaviour of individual molecules 
within spines are important: synaptic plastic­
ity is due, at least partly, to changes in the 
number of postsynaptic receptors10 and, in 
some cases, functional differences between 
synapses can be associated with the presence 
or absence of a few synaptic molecules11.

Moreover, the recent introduction of 
high-resolution imaging techniques has 
revealed that, in living neurons in vitro and 
in vivo, spines are actually morphologically 
very plastic12–14. Recent findings suggest 
that synaptic currents, and probably also 
molecular trafficking, can also be modulated 
by the spine geometry15–19. Superresolution 
imaging techniques now enable measure­
ments of individual molecules at spines with 
an accuracy of tens of nanometres20. These 
technical advances have provided a fascinat­
ing view of the cellular physiology of neurons 
— which are traditionally studied via somatic 
recordings with electrodes — and it will soon 
be possible to probe the function of nano­
compartments such as dendritic spines one 
molecule at a time. The era of nanophysiology 
has arrived.

Limitations of existing theories
As outlined above, traditional cable theory 
was designed to describe macroscopic struc­
tures, such as copper wires or squid giant 
axons. During the electrical excitation of 
such structures, global changes in the con­
centration of electrolytes are negligible and 
spatial constraints are essentially homogene­
ous. This leads to the passive movement of 
electrical charges, driven mostly by classical 
diffusion.

However, the propagation of an electrical 
current in an axon or dendrite is different 
from that in an electrical wire. In neurons, 
current flows as a result of ions moving 
through a dielectric medium, whereas in a 
wire electrons are the charged particles 
moving throughout a metallic conductor. 
In spite of this, the HH model — based on 
the opening and closing of channels in a 
cylinder2 and approximated by a succession 
of resistances and capacitances — has suc­
cessfully provided a framework for studying 
neuronal conduction for the past 60 years 
and has accurately explained experimental 
results obtained with classical microelec­
trodes4. However, as neuroscientists start 
to have access to functional measurements 
from smaller cellular structures, one won­
ders whether cable theory (or HH models) 
can still provide the accuracy and robust­
ness that are required to study the electrical 

properties of small compartments in a 
neuron. Do the smaller geometrical or elec­
trical features of these structures have any 
functional impact?

In the case of dendritic spines, it seems 
that traditional models are grossly inad­
equate. Because of their geometry, dendritic 
spines cannot simply be approximated by 
cable geometries: even when simplified, 
they consist of a spherical head connected 
by cylindrical neck to the dendritic shaft. 
In reality, of course, spines are morphologi­
cally highly complex and exhibit enormous 
geometrical variability (FIG. 1a,b). In such 
submicron spaces, the variation in geometry 
between the two different spatial regions 
(head and neck) has a dramatic effect. For 
example, using modelling and simulations21, 
it has been shown that the decay time of 
the diffusion of particles (such as molecules 
or ions) from the spine head into the neck 
[Au:OK?] is dominated by diffusional coupling 
between the spine neck and head22,23. This 
coupling takes into account the many possi­
ble ways in which an ion can leave the spine 
given that it may return a countable infinite 
number of times to the head before escap­
ing. Diffusional coupling, a key contributor 
to the regulation of ionic concentrations in 
a spine, is an intrinsic consequence of the 
particular geometry of the dendritic spine 
and arises owing to the presence of the small 
radius of the neck at the entrance of the 
spine. Moreover, the convoluted and often 
constricted nature of the spine neck (FIG. 1c) 
makes it possible that there might be signifi­
cant differences in the diffusional coupling 
in different dendritic spines.

In addition to the constraints that arise 
from their peculiar geometry, the small 
size of spines could also significantly alter 
current flow within the spine. For example, 
during synaptic stimulation or the opening 
of ion channels in the spine as a result of a 
back-propagating action potential, the number 
of ions entering the spine is large (estimated 
from NMDA, AMPAR or voltage calcium 
channel currents to be between a few to 
tens of thousands of ions6) when compared 
with the small volume of the spine. This 
will lead to a marked electrical effect that 
must be taken into account: the entering 
ions, by dramatically changing intracellular 
ion concentrations, alter the electric field at 
the narrow constriction at the spine neck–
head junction (FIG. 1c). This large spatial 
change in the electric field cannot be cap­
tured by the linear cable theory (in which 
the spine is approximated as a wire and the 
spatial scale is not small enough to take into 
account small holes such as the spine–neck 
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Glossary

Back-propagating action potential
The wave propagation of an action potential that is due to 
the opening and closing of ionic channels, moving in the 
direction of the soma.

Debye length
The length after which an electric charge is screened from 
the effects of an electric field by water or other polar 
molecules [Au:OK?]

Dielectric medium
A media in which charged particles can become polarized, 
the properties of which are characterized by a dielectric 
constant (ε).

Diffusional coupling
Coupling of two compartments that is due to the exchange 
of diffusing particles, such as ions or molecules.

Diffusional flux
The number of particles per unit of time entering through a 
surface.

Electrodiffusion
The combination of diffusion and electrostatic forces that 
are applied to a charged particle. The particle motion 
results from the sum of these two forces.

Ficks’s diffusion law
A macroscopic law that assumes that the diffusion flux is 
proportional to the gradient of concentration.

Monte Carlo simulations
Numerical simulations in which each particle (molecules or 
ions) is assumed to move through Brownian motion. This 
simulation allows all particle trajectories to be monitored 
at any moment of time.

Nanostructures
Complex geometrical domains with a clear identified elec-
trophysiological function and with a characteristic length 
in a range from tens to hundreds of nanometres. Examples 
include dendritic spines, cilia, synapses, parts of sensory 
cells, protrusions and the endoplasmic reticulum.

Neuronal ensembles
Sets of neurons connected by synapses. A neuronal 
ensemble can sustain a network activity such as 
synchronization, oscillation or rhythm.

Steady-state regime
A system state described by stationary parameters that 
are by definition independent of time.

Transient regime
Period of time during which the parameters describing the 
state of a system vary and converge toward the 
steady-state regime.
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junction or narrow passages). This large 
change in the electric field can markedly 
influence the flux of ions between the spine 
head and its neck and constitutes another 
breakdown of the classical cable theory for 
spine function.

It is also important to consider that, when 
cable theory is used as a general framework 
to calculate the electrical fields, current and 
other quantities of interest during the tran­
sient input, it is necessary to make certain 

assumptions, such as a non-zero current 
density at the channel boundary and often 
a rate of current change that is lower than 
the rate of ion relaxation-to‑neutrality, a 
phenomenon that is not captured by cable 
theory. These assumptions are yet to be tested 
experimentally.

Taken together, these limitations make 
it clear that the geometry of the spine can­
not be simply approximated by an ensemble 
of explicit capacitance and local known 

resistance. Molecular-level equations that 
account for the interaction between ion con­
centration and electric fields (an interaction 
that is ignored in traditional cable equations) 
are needed.

Modelling dendritic spines
With the advent of new imaging methods, it 
is now possible to record voltage responses 
in dendrites and spines during action poten­
tials (FIG. 2). This opens new avenues for 
studying how changes in voltage propagate 
in these nanoscale neuronal compart­
ments and means that better models will 
be required to describe such changes. What 
theoretical framework can be used to study 
the electrical properties of nanocompart­
ments such as dendritic spines? One can 
use Monte Carlo simulations to explore the 
dynamics of the concentration of diffusing 
ions such as calcium in spines24–26; however, 
as described above, there are no simple theo­
retical frameworks that capture the physical 
dependencies between ion concentration 
and electric fields.

Electrodiffusion and the PNP equation. The 
diffusion of charged particles, such as ions, 
in an electric field (electrodiffusion) can be 
studied using the Fokker–Planck equation 
(equation 1), which uses Ficks’s diffusion law 
to describe a situation in which the diffusing 
particles are under the influence of both an 
ionic concentration gradient and an electric 
field. In the Fokker–Planck equation (equa­
tion 1 ), the first term represents the con­
centration gradient and the second term the 
force generated by the electric field:

in which p is the concentration of the 
species, D its diffusion coefficient, ∇ is the 
Laplacian operator, z is the valence, e is the 
elementary charge, k is the Boltzmann con­
stant, T is the temperature, Δp is the gradient 
and U is the electric field [Au:OK?].

This basic equation is further developed 
as the mean-field Poisson–Nernst–Planck 
(PNP) approximation (BOX 1), which 
consists of two coupled equations: the 
Fokker–Planck equation, which describes 
the density of charge for any ion (such as 
sodium, potassium and calcium) inside any 
microdomain; and the classical Poisson 
equation of electrostatics (written originally 
by Maxwell), which describes the elec­
tric potential generated by the moving 
charges4,27. These two coupled partial differ­
ential equations can be resolved only alge­
braically for some simple cases, otherwise 

Figure 1 | Geometric and morphological complexity of dendritic spines.  a | Three-dimensional 
ultrastructural reconstructions of spines from several layer 2/3 pyramidal cells in the mouse visual cor-
tex. The large variability in the morphology of their heads and necks is apparent. Red areas mark the 
position of postsynaptic densities (PSDs). b | Rotational views of three spines, illustrating their morpho-
logical complexity and showing how the spine neck can become physically pinched. c | Physical 
obstruction of spine neck. The images show consecutive 4 nm thick serial sections cut through a den-
dritic spine from the mouse primary somantosensory cortex. The head of the spine is in the lower part 
of the images, and an asymmetric synapse can be seen (asterisk). The spine neck is open in the left 
section (arrow) but is obstructed by an intracellular electrodense organelle in the right section (red 
circle). Image size: 1500 × 1500 nm. Parts a and b are reproduced from REF. 51, Frontiers. Part c is courtesy 
of A. Merchan and J. De Felipe, Cajal Institute, Madrid, Spain.
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numerical simulations are necessary. The 
PNP approximation has recently been suc­
cessfully applied to model glutamate dif­
fusion in a two-dimensional (2D) synaptic 
cleft28, providing predictions that were sup­
ported by experimental evidence29,30. These 
equations have also been used to study, 
for example, the ionic fluxes through the 
complex potential wells generated in an ion 
channel pore as well as ion channel selectiv­
ity in various conditions in which the chan­
nels were approximated as nanotubes4,31–34. 
Indeed, simulations using PNP equations 
could predict the experimental results in a 
certain number of channels35.

Applying the PNP equation to dendritic 
spines. Although spines are much larger than 
ion channels, pioneering work developed a 
1D electrodiffusion approach to model the 
spine’s electrical properties, demonstrating 
the limitations of cable theory36. By approxi­
mating Poisson’s equation for the electric 
field using a membrane capacitance and 
under the assumption that the membrane 
voltage is proportional to the ionic con­
centration, numerical simulations of ionic 
motion in the different compartments (spine 
head, neck and shaft) were possible on a 
timescale of milliseconds.

These results showed that spine mor­
phology can regulate electrical propagation 

and electrodiffusion. However, the mem­
brane voltage simplification did not allow 
for spatial changes in the electrical field. 
For example, at the entrance of the narrow 
spine neck, large changes in the electric 
field can be predicted that prevent charges 
from returning to the head once they enter 
the neck (which would not be the case if 
diffusion alone was operating)37. Some 
other measurements and theories of spine 
neck resistance22,38 make the same implicit 
assumption that a diffusing ion, as it enters 
the neck, can return to the spine head an 
infinite number of times21,23. However, the 
neck diffusion time constant (τ) [Au:OK?] 
is given by formula shown in equation 2 
(REF. 23), in which L is the spine neck length, 
a the radius, V the volume of the spine head 
and D the diffusion coefficient, and thus 
this diffusion time constant cannot be used 
to define the electrical resistance of the 
neck, because it reflects diffusion within the 
entire spine, including the head.

To properly understand how ions dif­
fuse through the spine neck, it is necessary 
to consider the effect of the electric field. 
Traditional diffusion theory predicts that 
the distribution at equilibrium of ions in a 
bounded three-dimensional (3D) region, 

such as an isolated spine head, should 
be uniform (FIG. 3). However, if one uses 
an electrodiffusion framework that does 
not make an assumption of local electro-
neutrality, adding an electric field should 
alter the distribution of ions, which now 
become concentrated near the membrane 
surface (FIG. 3e,f), owing to the sum of repul­
sive forces between ions. Thus, as a particle 
driven by electrodiffusion crosses a 3D 
structure in high concentration of ions, its 
motion will preferentially occur along the 
surface membrane. This leads to different 
situation to that of pure diffusion, in which 
the motion occurs across the entire volume. 
In addition to the differences in ionic con­
centration, the capacitance of a dielectric 
ball (BOX 2) does not necessarily change in a 
linear manner with the total number of elec­
tric charges contained in the ball. This repre­
sents another significant deviation from the 
classical elementary electrostatic theory for 
conductors in which the charge is controlled 
by voltage through the capacitance. Finally, 
the movement of large proteins carrying a 
charge that are located in the membrane 
layers and are disturbed by a local ion cur­
rent, such as that generated by the entry of 
ions from voltage calcium channels, could 
be substantial near the thin dendritic spine 
neck membrane, where the electric field is 
the largest in a dendritic spine39.

In summary, narrow passages or small 
openings between microcompartments 
can affect the electrical field strength. 
Moreover, inside a nanocompartment, 
the change in ionic mobility [Au:OK?] 
could transiently create an excess of posi­
tive charge in the electrolyte that affects 
the motion and distribution of the charges 
and any travelling transient current. It may 
be crucial to take into account all of these 
effects to understand the refined electrical 
properties of dendritic spines.

Geometry matters. The diffusion of ions in 
small compartments is not only altered by 
the electric field; the exact shapes and geom­
etries of the compartments are also crucial. 
For example, for most spines, the spine neck 
does not really resemble a simple tube, but 
is a tortuous passage that can expand and 
contract, creating obstructions due either 
to ‘pinching’ (the apposition of plasma 
membranes) or to ‘plugging’ by organelles 
such as the spine apparatus or endoplasmic 
reticulum40 and other intracellular membra­
nous structures (FIG. 1c). In these situations, 
ionic flow in and out of the spine could 
be significantly compromised or altered. 
Moreover, nanodomains of membrane lipids 

Figure 2 | Imaging local voltage changes in a dendritic spine.  a | The top panel is a fluorescent 
image of a cultured mouse hippocampal neuron expressing the genetically encoded voltage indicator 
ArcLight. The bottom panel provides a higher magnification view of the dendrite (blue) and spine (red) 
in the boxed region. b | The average optical waveforms of the ArcLight responses in the dendrite and 
spine, and simultaneous somatic electrophysiological recording of action potentials (green) induced 
by a 20 ms current injection. This experiment illustrates the use of optical measurements of membrane 
potential from small neuronal subcompartments such as dendritic spines and dendritic shafts. These 
data could be used to quantitatively explore and model the role of electrodiffusion and the influence 
of the local geometry of nanocompartments in the propagation of electrical signals. Figure is courtesy 
of M. Sakamoto, Columbia University, New York, USA. [Au: Please define ΔF/F]

τ = LV
πa2D   (2)+ V

4aD + L2

2D
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or proteins, particularly those that have an 
overall electrical charge, could alter the flow 
of electrical currents. At these nanometre 
scales, the proximity of membranes creates 
what is essentially a 2D or even a 1D physical 
system, the characteristics of which may not 
always be consistent with a macroscopic 3D 
view of the spines. A similar situation was 
found in the field of nanoscience, in which 
exploration of nanotubes and other physical 
systems with small dimensions revealed a 
new set of laws and rules41.

Finally, as described above, the electro-
neutrality assumption that is inherent 
in classical theories allows many model 
equations, such as the cable theory, to be 
simplified. However, it is not clear that 
this assumption is satisfied in a situation 
in which a transient current is carried 
by charged molecules or ions or during 
a steady-state regime in which a current 
is continuously injected. Indeed, if this 
assumption is not made it can be shown 
that there can be long-range electrostatic 
interactions over distances much larger 
than the Debye length and thus a molecule’s 
motion can be approximated as Brownian 
and insensitive to any electrical field). 
These interactions can generate heteroge­
neity in the electric field and ionic gradi­
ent distribution. This situation could be 
particularly important in dendritic spines 
in which the small diameter and large 
length imposes large constraints on ionic 
distributions.

Extending cable theory
As was the case for traditional cable theory, 
solving the PNP equations for electrodif­
fusion could lead to the description of ion 
dynamics in nanostructures in steady-state 
and transient regimes. For example, using 
cable theory, the electrotonic length of a 
dendrite was derived as a direct function 
of basic parameters such as the membrane 
and intracellular resistance6. Using these 
analytical solutions, Rall derived the 3:2 
power law of branching, which described the 
distribution of currents at a node at which a 
dendrite divides into three branches and has 
been influential in morphological and physi­
ological studies of dendrites42. Exploring 
the parameter space of a model such as 
this by analytical or numerical simulation 
approaches is possible and allows the study 
of different regimes. A similar approach 
could be taken to explore PNP approxima­
tions at the nano- or micrometre scale level.

The main difficulty in extending cable 
theory to nanostructures is the fact that 
the PNP equations are nonlinear and much 
harder to solve analytically than the tradi­
tional, linear macroscopic cable theory. For 
example, in the case of a small opening in a 
sphere (as in spines) one can apply the ‘nar­
row escape’ theory37 (which describes how 
small openings control diffusion fluxes in 
complex domains) to the PNP equations. 
This shows that, in contrast to the predic­
tions of classical electrostatic theories of 
conductors, when the total charge (Q, equal 

to the number of charged particles present 
[Au:OK?]) is enclosed in a ball (BOX 2) 
and we do not assume electro-neutrality 
below hundreds of nanometres (that is, the 
charges in the ball are not screened after 
few nanometres), the difference of voltage 
between the centre and the membrane of 
the ball increases in proportion to log Q 
and not linearly, as predicted by the clas­
sical law U = Q/C, where U is [Au:please 
add definition] and C is the capacitance. 
Interestingly, for this simple configura­
tion the distribution of ions (which can be 
estimated mathematically) is not uniform 
at the steady state but shows an accumula­
tion at the membrane (FIG. 3). However, the 
distribution of ions in a transient regime 
remains too difficult to be derived exactly. 
In the case of a transient regime, numerical 
simulations and design coarse-grained sim­
ulations can be used to estimate the volt­
age potential and distribution of charged 
particles in compartments with various 
geometries.

When PNP equations are applied to 
dendritic spines (with no ionic flux and 
no electric field on the membrane bound­
ary outside the entrance of the neck and 
the spine channels) new predictions can be 
made about the effect of geometry on the 
regulation of electrical current flow. First, 
PNP equations predict that the voltage 
inside the spine (between the centre of the 
spine and the entrance of the neck) should 
saturate as the injected current increases. 
Second, PNP equations predict that ions will 
be concentrated at the surface of the spine 
when the spine head is isolated and the cur­
rent leak through the neck is slow. Finally, 
a large electric field at the spine neck–head 
junction is predicted. When it becomes pos­
sible to test these predictions experimentally, 
we will find out whether a change in the 
geometry (neck length or diameter) affects 
the drop in voltage that occurs between the 
spine head and the dendritic shaft. Indeed, 
changing the spine geometry would lead 
to different charge distributions and local 
voltage changes that can affect the entire 
spine. Such a change in the voltage drop 
can be compared to the effects of adding or 
removing receptors from the synapse during 
synaptic plasticity. For example, when glu­
tamatergic receptors are removed from the 
postsynaptic density, the electric current and 
the change in voltage in the dendritic shaft 
following a synaptic input will decay. We 
predict that a similar decay can be achieved 
by modulating the spine geometry; the exact 
changes should be estimated by the PNP 
equations. We suggest that changing the 

Box 1 | Poisson–Nernst–Planck equations for a dendritic spine

To model the voltage change in a dendritic spine when a steady current (I) is injected at the spine 
head, we start with the stationary Poisson–Nernst–Planck (PNP) equation for the spine domain (Ω). 
This model describes the motion of charged ions in a dendritic spine. The electrical properties of 
the boundary (∂Ω) of the equation are modelled as a dielectric of permittivity (ε, in which ε

0
 is the 

vacuum permittivity). At the boundary, there is no flux of the electric field nor flow of ions. The 
remaining part of the boundary, which is assumed to be a circular disk of radius, is grounded and 
absorbs ions. Thus, the coupled system for the electric potential and concentration of single 
positive ion species consists of the Poisson equation (equation 3) and the Nernst–(Fokker)–Planck 
equation (NPE; equation 4):

in which D is the diffusion coefficient, k is the Boltzmann constant, z is the charge number, e is the 
electron charge, n is the normal unit vector at the boundary, ∇ is the Laplacian operator, T is the 
temperature, θ is [Au: please add definition] and Δp [Au:OK?] is the concentration gradient 
[Au:OK?]; the last boundary condition is that current I is injected at the postsynaptic density (PSD), 
which is of size a [Au:OK?]. When several positive ions are considered, the set of equations 
becomes more complicated.

Δϕ = zep
εε0

            (3)in Ω, ∂ϕ
∂n

ϕ  ∂Ω
∂Ω

= 0, = 0
r

a

(4)
∂p
∂t = D (Δp + 

ze
kT

Δ

(p   ϕ))

Δ

in Ω,

∂ϕ
∂n ∂Ω

ze
kT p∂p

∂n + = 
PSD

∂ϕ
∂Ω∂n

ze
kT p∂p

∂n + = 0, p  ∂Ωa = 0,
r

I
πa2
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spine geometry may provide a mechanism 
for regulating synaptic plasticity without 
changing the number of receptors.

Despite the advances that may be made 
using this model, we note that the PNP 
equation-based theory that we discuss here 
is still a simplification. A full 3D model 
would also need to account for the interac­
tion of water with all ionic species and the 
effect of local charges carried by ions. This 
more complete model and the simulations 

that it would enable could become numeri­
cally plausible as we develop new methods of 
modelling and algorithms that can consider 
molecular dynamics at a micrometre scale.

Applications: spines and beyond
If neuroscientists had access to a cable 
theory that incorporated electrodiffusion, 
they could explore many aspects of the 
physiology of neuronal compartments in 
quantitative detail. For example, a better 

understanding of the electrical properties 
of dendritic spines could have important 
repercussions for our understanding of 
synaptic plasticity, as it could help to explain 
how changes in spine geometry affect their 
electrical properties and modulate synaptic 
efficacy17,19,38,43. Even if changes in the size of 
postsynaptic potentials are mostly explained 
by a change in the number or location of 
postsynaptic receptors, they could still be 
modulated by altering the spine neck length 
and radius or the connection between the 
head and the neck. A theoretical under­
standing of these properties will help to 
clarify the relationship between the structure 
and function of dendritic spines.

Similarly, a ‘new’ cable theory that 
incorporates electrodiffusion and the PNP 
equation could be used to understand the 
electrochemical coupling that occurs in 
presynaptic terminals. These structures are 
similar in size to dendritic spines, and also 
have peculiar geometrical constraints, such 
as the small synaptic surface onto which the 
synaptic vesicle can dock44. It is likely that 
the large changes in the electric field that are 
associated with action potentials, and the 
existence of charged molecules bound to the 
vesicles, could influence, for example, the 
diffusion of calcium ions from the plasma 
membrane as they reach the vesicle, bind to 
synaptotagmin and result in vesicle fusion 
and neurotransmitter release.

Although most neurophysiologists meas­
ure electrical signals from the somata and 
large primary dendrites, axons and second­
ary or tertiary dendrites in most mammalian 
neurons are very thin, with diameters that 
can be smaller than 1 micron45. This makes 
it likely that geometrical constrains and elec­
trodiffusion could matter.

In addition to these neuronal compart­
ments, astroglia seem to carry out most of 
their interesting functions using their nar­
row processes, which are in close apposition 
to neuronal membranes and can even enter 
synaptic clefts46. These processes can have 
diameters of less than a hundred nanometres 
and are starting to be explored using modern 
imaging techniques.

Another type of structure in which local 
geometry makes it necessary to consider 
electrodiffusion are the thin cilia present 
in olfactory receptor neurons or in coch­
lear hair cells47. These cilia have diameters 
of less than a hundred nanometres and 
dimensions approximating thin spine 
necks. Their physiological roles rely on their 
electrical properties, as they regulate sen­
sory transduction through chemoelectrical 
or mechanoelectrical coupling.

Figure 3 | Comparison of simple diffusion and electro-diffusion theories.  Traditional diffusion 
theories and electrodiffusion theories make very different predictions about the distribution of ions 
within a three-dimensional structure such as a dendritic spine head. a–d | The change in the distribu-
tion of electrical charges with different total concentrations of ions at equilibrium, predicted by 
solving the Poisson–Nernst–Planck (PNP) equation for a sphere of 1 μm radius (red lines). The graphs 
show the concentration of ions at each position at the sphere’s radius. As the total charge injected 
into the sphere increases from 103 in part a to 106 in part c, the charge progressively accumulates at 
the boundary. Part d summarizes this change: Q1 = 103 charges, Q2 = 104, Q3 = 105, Q4 = 106. This is in 
contrast with the predictions of the diffusion model (blue lines), in which the concentration of the 
diffusing particle is uniform throughout the sphere. e–f | Schematic illustration of these differences. 
In part f, the source of the electric field is an ensemble of steady-state charges (see BOX 2). [Au: 
please define c/cmax]
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Finally, an even stronger reason to 
extend cable theory to the nanoscale comes 
from invertebrate neuroscience48. In many 
invertebrate preparations, such as those of 
Caenorhabditis elegans, Drosophila mela-
nogaster and Hydra vulgaris, most neurites 
have diameters of a few hundred nanome­
tres at most. In this case, one could argue 
that, to understand how activity propagates 
across the neural network, traditional cable 
theory cannot be applied at all, as already 
suggested36.

A new nanophysiology framework
The introduction of new imaging methods, 
such as two-photon and superresolution 
microscopies, are enabling experimental 
scientists to measure the physiological 
behaviour of small neuronal compartments 
in living preparations, in some cases with 
single molecular precision. For example, 
recent superresolution stimulated emission 
depletion (STED) microscopy has shown 
that the spine neck diameter can be resolved 
in living cells49,50 and can change in response 
to activity18. These data have confirmed the 
functional importance of these biological 
nanostructures, and are starting to reveal a 
rich and often unexpected phenomenology. 
At the same time, a theoretical framework 
to tackle the neuronal nanoscale needs to be 
developed and will be necessary for a proper 

quantitative understanding of these systems, 
which have critical functions such as syn­
aptic transmission and plasticity. Exploring 
broader theoretical formulations, such as 
the PNP equations for electrodiffusion, may 
allow neuroscientists to make predictions 
on the importance of particular molecules, 
design experiments to test key variables 
and eventually understand how form and 
function are intimately linked in biological 
systems at the nanoscale.
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in which ε is the dielectric of permittivity [Au:OK?], ε
0
 is the vacuum permittivity, φ is [Au:please 

add definition] and Ω is the spine domain. [Au:OK?]
The electric properties of a dielectric medium 

in a structure such as a spine head cannot be 
properly derived using traditional models of 
electrical membranes (see the figure). In the PNP 
model, no electric currents flows through the 
dielectric sphere: the x‑axis is the difference of 
potential φ(0) – φ(R), and the y‑axis is the number 
of charged particles N such that Q = eN (where e 
is the charge of an electron. The continuous line 
in the figure shows the solution of equation 5, 
and the dashed line is shows the classical 
relationship, Q = CV. R, [Au: please add 
definition for R]; z, valence [Au: OK?].
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4πεε0
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4πεε0
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