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Abstract

Neuronal networks can generate complex patterns of activity that
depend on membrane properties of individual neurons as well as on
functional synapses. To decipher the impact of synaptic properties
and connectivity on neuronal network behavior, we investigate the re-
sponses of neuronal ensembles from small (5-30 cells in a restricted
sphere) and large (acute hippocampal slice) networks to single elec-
trical stimulation: in both cases, a single stimulus generated a syn-
chronous long-lasting bursting activity. While an initial spike trig-
gered a reverberating network activity that lasted 2-5 seconds for small
networks, we found here that it lasted only up to 300 milliseconds in
slices. To explain this phenomena present at different scales, we gener-
alize the depression-facilitation model and extracted the network time
constants. The model predicts that the reverberation time has a bell
shaped relation with the synaptic density, revealing that the bursting
time cannot exceed a maximum value. Furthermore, before reaching
its maximum, the reverberation time increases sub-linearly with the
synaptic density of the network. We conclude that synaptic dynamics
and connectivity shape the mean burst duration, a property present
at various scales of the networks. Thus bursting reverberation is a
property of sufficiently connected neural networks, and can be gener-
ated by collective depression and facilitation of underlying functional
synapses.

Keywords: Bursting, analysis, modeling, mathematical neuroscience,
mean-field model, synaptic depression facilitation, neuronal net-
works, electrophysiology, analytical computations, reverberation
time

Introduction

Synchronous neuronal activity is determined by intrinsic and synaptic prop-
erties of neurons participating in the network. Patterned stimulation of one
of the participating neurons can lead to reverberations of selective neural ele-
ments [1, 2]. The cellular parameters that determine the properties of a syn-
chronized network burst are still not fully understood [3, 4]. Earlier studies
proposed that membrane currents generated by calcium and calcium-gated
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potassium channels create plateau potentials which can depolarize neurons
for seconds [5, 7]. On the other hand, synaptic properties are essential for
the generation and maintenance of the bursts [6, 8, 9]. Recent studies pro-
pose that specific ’hub’ long range GABAergic neurons in the hippocampus
are the ones to trigger and synchronize network bursts [10]. In hippocampal
neurons grown in microcultures [9], network bursts induced by a single ac-
tion potential triggered in one neuron of the network, reverberate for several
seconds. This reverberating burst is followed by a long refractory period, as-
sumed to be caused by the depletion of neurotransmitters from presynaptic
terminals [9].
In the present study, we investigated this property across networks of vari-
ous scales. Neuronal network modeling has shown that facilitation-depression
networks can underlie reverberation in large neuronal ensembles [11, 12, 13,
15], suggesting that a few seconds of reverberation correspond to a burst du-
ration that in another context characterizes short-term memory [15]. Mean-
field modeling approaches are constantly used to study the effect of synaptic
connection on network properties [11, 16, 17].
Because the mean-field description of depression-facilitation synapses does
not depend on the number of neurons, small and large neuronal ensembles
with similar local connectivity should produce similar responses. Facilitation
and depression are short-term neuronal properties, detected in electrophysi-
ological experiments as changes in the amplitude of excitatory postsynaptic
currents (EPSCs) evoked by a paired stimulation with short inter-stimulus in-
tervals (tens of milliseconds) [11]. Both mechanisms originate at the synapse
and while depression is associated with depletion of presynaptic vesicles,
facilitation reflects an increased vesicular release probability due to accumu-
lation of residual calcium at the presynaptic terminal. These processes cause
modulation of synaptic transmission in the range of milliseconds to several
seconds [18, 19]. From the analysis of the model, we report here collective
depression and facilitation that characterizes the ensemble behavior of many
synapses, leading to much longer time scales than the ones associated with
single neuronal of synaptic unit responses.
We investigated the behavior of small neuronal networks (2-20 neurons) grow-
ing on permissive islands. A single intracellular stimulus evoked a burst
epoch marked by synchronous activity lasting several seconds (reverbera-
tion period) that depends on the local synaptic properties. The depression-
facilitation model predicts that the burst duration has a maximum as a func-
tion of the synaptic connectivity (the other synaptic properties are constant)
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and we also investigate the effect of changing the main parameters of the
model. In addition, the depression-facilitation model shows that the facili-
tation variable mediated in part by calcium dynamics defines the duration
of the first evoked burst, but not of a second one induced 5 seconds later.
Although the model contains eight variables, five are already fixed from the
literature and three will be extracted from experimental data. The model
reproduces the time course of the recorded electrophysiological responses.
Finally, we show that bursting reverberation is a general property that can
be found in more organized neuronal ensembles such as in pyramidal cells
from acute hippocampal slices. However, the reverberation duration is much
shorter compared to the one we report in neuronal cultures.
We conclude that bursting reverberation is a feature that depends on intrin-
sic properties of depression-facilitation synaptic ensembles, which persists in
both small and large neuronal network: Bursting reverberation results from
synaptic properties and overall network connectivity. Finally, depression-
facilitation properties define the duration of the synchronous bursting activ-
ity.

Results

To study the dynamics of neuronal networks and extract the fundamental
properties underlying the network activity, we use two types of experiments
with a mean-field neural network modeling based on depression-facilitation.
The first experiments involve hippocampal neurons in culture, forming a
small group of neurons (between 5-30) (Fig. 0.8). In such neuronal ensem-
ble, an action potential evoked at any neuron was able to generate a burst
lasting 1-4 seconds. Furthermore, when two action potentials were evoked at
5 seconds interval, the duration of the second burst was markedly reduced
compared to the first one, while no change was found when the intervals be-
tween the bursts was longer than 35 seconds (Fig. 2A) [21]. Synaptic vesicles
were required to sustain bursting, and calcium was determinant in defining
the duration of the first burst [9]. In the second experimental setting, we
studied reverberation in hippocampal pyramidal cells from acute brain slices.
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Figure 1

Bursting reverberation in small neuronal islands. A illustration of a
network island where neurons are recorded, and filled with biocytin
for immunohistochemical identification (red). The island was co-
stained with synaptophysin (green dots). B Whole cell recording
from a neuron in the island, illustrating responses to two short
current pulses that evoke action potentials in the recorded neuron.
The first current stimulation evoked an initial spike followed by a
depolarization and several additional spikes. The second current
pulse, applied 2.5 seconds later produced only a single spike, that
was followed by a smaller reverberating network burst, as seen in
response to the first stimulus. Scale bar: 20 mV, 1 s.

Figure 2

The synaptic depression-facilitation model accounts for bursting
reverberation. (A) Evoked bursts generated in a microculture hip-
pocampal neurons, with a single action potential evoked alternately
at 5 and 35 seconds intervals, showing a reduction in burst duration
when the bursts are generated at the short interval. (B) Follow-
ing the experimental protocol, we simulated with equation 1 and
parameters of Table 1 the mean firing rate response, plotted as
a function of time. The corresponding facilitation and depression
variables show the level of neuronal activity underlying the overall
dynamics. (C) Plot of the product xy, which accounts for the total
synaptic modulation, as a function of time. (D) Burst durations
at 35 seconds and 5 seconds intervals. We compare the burst du-
rations from experimental data (n=20) with numerical simulations
of the model 1.

0.1 Reverberation is present in a generalized synaptic
depression-facilitation model

Our goal here is to investigate whether neuronal network bursts can originate
from synaptic properties, since neuronal intrinsic properties have recently
been suggested not to play an important role [9]. Thus we investigated
whether the depression-facilitation property of synapses can generate long
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lasting bursts. We adopt here a general mean-field model, to describe suffi-
ciently connected and homogeneous neural network, where the synaptic dy-
namics of a single homogeneous excitatory neuronal population is described
by the firing rate h, a facilitation parameter x and the running fraction of
neurotransmitter available (depression) y [11] see also [20]. Although the
depression variable is usually associated with a decay in the vesicular release
probability, the facilitation variable has been suggested to depend on presy-
naptic calcium dynamics. When a short stimulation is generated at a time
tstim, the overall dynamics is described by the generalized equations

τ ḣ = −h+ Jxyh+ + τHδ(t− tstim)

ẋ =
X − x

tf
+K(1− x)h+ (1)

ẏ =
1− y

tr
− Lxyh+,

where an experimental population spike stimulation is accounted for in our
equation by the term Hδ(t− tstim), which sets at time tstim the average firing
rate of the network to the value H (≈ 50 Hz). The model of equations 1
does not account for neuronal inhibition, which could have be added using an
equation for the inhibitory neuronal voltage. However, depression prevents
the system from generating epileptic type behavior and in the experimental
data we analyzed here, inhibitory neurons were suppressed pharmacologi-
cally. Thus we have not taken into account inhibition. The average popu-
lation firing rate is given by R(h) = h+ = max(h, 0), which is a threshold
linear function of synaptic current [13]. The term Jxy reflects the combined
effect of synaptic short-term dynamics and network activity. The second
equation describes the facilitation dynamics, which enters into a depression
process described in the third equation [11]. J measures the mean num-
ber of connections (synapses) per neurons, as derived analytically in [14].
We have here distinguished K and L which describe how the firing rate is
transformed into molecular events that are changing the duration and the
probability for vesicular release respectively. X is the steady state of the
facilitation variable x. Thus equations 1 generalize the classical depression-
facilitation model. More precisely, in a biophysical context, L is the rate at
which vesicles are depleted for a given firing rate and K measures the rate
of facilitation. This model extends the classical equations presented in [15].
The two time scales tf and tr define the recovery of a synapse from the net-
work activity. Although, there are 8 parameters in this model: 5 are almost
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the same as the one published in [15, 13, 22]. We will be left with three
parameters to identify, which is a significant reduction of the phase space. In
that context, we decided to see whether or not by tuning the three remaining
parameters: the two time scales tf and tr and the functional network con-
nectivity J, we could reproduce the phenomenology of bursting. Indeed, the
initial long phase could be described by facilitation, while the depression will
force the burst to terminate. Finally, we note that the present mean-field ap-
proach does not account for single spikes generated by a single cell, but only
for elicited spikes that are recruiting the ensemble of the neuronal network.
Indeed, not all electrical stimulations lead to a burst. Thus the model starts
at a population spike level, when a single spike starting in a single neuron
was successful in initiating sufficient spikes in all other connected neurons,
leading to a bursting activity.
In that context, we decided to see whether by tuning the two time scales tf
and tr and the network connectivity J, we could reproduce the phenomenol-
ogy of bursting. Indeed, the initial long phase could be described by facili-
tation, while the depression will force the burst to terminate.
Following the experimental protocols described above (see also Material and
Methods), we explore how the synaptic-depression model could reproduce
the two bursts at 5 and 35 seconds intervals. We simulated such dynamics
using equations 1 and identified the corresponding parameters (J and tf are
given in Table 1): the stimuli activates the network which generates a similar
behavior as observed in the experimental data, i.e. a reduction in the second
burst duration when it was generated at a short interval (5 seconds) after a
priming burst (Fig. 0.8B-D and table A in S1 file). We show in figure Fig.A
in S1 File, the effect of changing the bursting interval: after 10 seconds, the
ratio returns to one. In agreement with the experimental result, the model
shows no changes in the burst duration in the second burst when evoked after
35 seconds. To examine what determines the slow refractoriness of network
bursts, we plotted in Fig. 0.8B the depression and facilitation parameters
and found that facilitation allows the initial spike evoked in a single neuron to
activate the full network, which then disappears at a time scale of tf = 1.3 s,
while the slow depression component prevented the neuronal ensemble from
reactivation, when a second burst is generated at a short interval. We took
1.3 s for the decay time constant of facilitation [11], which is larger than
the decay of calcium, reported to be order of the order of 200 ms [24]. This
difference shows that the synaptic facilitation time scale we use is not exactly
following the calcium dynamics.
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Using the combination of the modeling approach with the electrophysiologi-
cal recording, we conclude that the long recovery in the paired pulse network
protocol is induced by the network synaptic depression. Although depression
decay with a single exponential time scale of tr = 2 s, it could last for tens
of seconds. This decay is compatible with the depletion of synaptic vesicles,
which induces depression. Indeed during vesicle fusion, the readily releasable
pool is depleted with a time scale of less than 100 ms, while long stimula-
tions can activate other pools, which can take seconds to recover [23]. In
addition, the review [23] suggests that the long lasting bursting (2 seconds),
which was shown to involve asynchronous vesicular release, recruits several
different vesicular pools, leading to an overall recovery of 2 s. In addition, the
depletion is so strong that it takes a total of 30 seconds to recover to the basal
state. At this stage, we have shown that synaptic depression-facilitation ac-
counts for the burst reverberation, which was a possibility left open in [21],
while the authors rules out many intrinsic channel properties of the neurons.
While synaptic depression is the dominant factor that prevented the fast re-
covery, it is also responsible for shutting down the burst activity as initially
reported in [6].

0.2 The spontaneous network activity does not elicit
a network burst comparable to an induced rever-
beration

Next, we extracted the spontaneous properties of the neuronal ensemble. For
that purpose, we use the fluctuation dynamics of the bursting time. We thus
add a source of noise in the first equation of system 1

τ ḣ = −h+ Jxyh+ + τHδ(t− tstim) +
√
τσω̇, (2)

where ω is a Gaussian white noise centered at zero of variance 1. By com-
paring the fluctuations of the burst duration obtained in the simulations and
the experimental data, we extracted an amplitude of the neuronal noise of
the order of σ = 2Hz. We further obtained (Fig. B (A) in S1 file) the distri-
bution of the burst duration for the first and the second evoked pulses: the
distribution of the first stimulation (centered at 2 s) is smaller compared to
the second one (centered at 1s), suggesting that the first stimulation leads
to a more robust response. We further found that the mean burst duration
was not much sensitive to the network noise amplitude (Fig. A in S1 file).
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However, the duration of the first burst was slightly decreasing as a function
of the noise, because the network was increasingly depressed (Fig. A in S1
file). Finally, we ran numerical simulations to study whether the sponta-
neous activity of the network (Fig. B in S1 file) could lead to a spontaneous
event with an amplitude comparable to an induced burst. We conclude that
with the amount of noise we extracted in the neuronal islands, the neuronal
network cannot generate spontaneous bursting in time scale of 10 of minutes.
Spontaneous depolarization generated by the noise is not sufficiently strong
to induce a long time burst at a time scale of minutes, because the noise
amplitude is too small. Generating a Burst is a rare event requiring a much
longer time scale. This is the reason why we do not see them in the model,
nor in the culture at this time scale. This analysis confirms that for such
extracted noise amplitude, Burst can only be induced here by a local strong
depolarization.

0.3 Estimating the reverberation time as a function of
the network parameters

Because the burst duration depends strongly on the synaptic properties, we
decided to investigate the effect of changing the total synaptic connections
(variable J). For that purpose, because the model 1 could reproduce the
bursting dynamics as observed experimentally, we decided to estimate ana-
lytically the reverberation time TR by analyzing the equations. Thus, fol-
lowing the experimental protocol, an induced spike at time t = 0 sets the
firing rate h to a value H and the reverberation time TR is thus defined as
the first time the firing rate h reaches a threshold value that we set equal to
hT = 10Hz, after which, we consider that there is no more any synchronous
bursting activity. Thus, we define the reverberation time as

TR = inf{t > 0, h(t) = hT when the stimulation is given at time t = 0}. (3)

By definition, the burst occurs between 0 and TR. To estimate TR, we ap-
proximate during the early bursting period t ≪ TR the firing rate h(t) ≈ H
by a constant in the last two equations of system (1) (Figs. C and D in S1
file). Although this approximation affects the dynamics of the depression
x and facilitation y variable, the decay phase of h is not much impacted.
Within these approximations, we obtain (see Supplementary material) that
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the firing rate can be expressed as the depression and facilitation variables

h(t) = H exp

(
− t

τ
+ J

∫ t

0

x(s)y(s)ds

)
. (4)

The integral
∫ t

0
x(s)y(s)ds can be estimated in terms of the variable−trLHX(1+

KH
1/tf+KH

). By inverting equation h(TR) = hT (the details are given for com-

pleteness in the S1 File), we obtain that new formula

TR(J) =

θ −
√

θ2 − 2JτXH(K − LX)τ ln
(

H
hth

)
JτXH(K − LX)

(5)

θ = 1− JXτ.

showing that the reverberation TR is a sub-linear function of the synaptic
connectivity J (Fig. E-F in S1 file). This formula synthesize the role of var-
ious parameters in shaping the bursting time. In particular, as J increases,
the reverberation time starts increasing slowly, which was an unexpected
property.
To investigate how the reverberation time TR changes in a larger interval
of synaptic connection, we use a numerical method and solve the complete
system of equations 1. We obtain a sublinear regime and interestingly, found
that the slow increasing phase is followed by a quick decreasing phase, sepa-
rated by a unique maximum value (Fig. 0.8). Such a bell shape behavior can
be interpreted as follows: when the network is not connected enough through
synapses, facilitation cannot sustain a strong reverberation time, while in a
network showing too many connections, synaptic depression dominates, pre-
venting a long reverberation time. Thus we found an optimal reverberation
time, occurring for a single value of the mean connectivity J .

Figure 3

Reverberation time as a function of synaptic connectivity. (A)
Burst duration time as function of the network connectivity (pa-
rameter J) for different values of the facilitation parameter K and
(B) the depression parameter L, (other parameters are described
in Table 1). We indicate the position of variable extracted for the
experimental datas, which lie close to the maximum. (C) Burst
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shapes at three different stages of the bell shape curve (parameter
L∗ and K∗).

Surprisingly, for the network parameters that accounted for the experi-
mental data (Fig. 0.8), we found that the parameters associated with the
bursting time TR are located close to the optimal value (Fig. 0.8). It is
not clear whether this is a pure coincidence or the optimum corresponds to
an attractor in the development of the neuronal islands. We conclude that
to obtain a maximal bursting time, the network should not be too much
connected and this optimal reverberation time depends on the biophysical
properties of the synapses and on the network connectivity.

0.4 The model could also account for decreasing ex-
tracellular calcium, that alters differentially and
sequentially evoked bursts in small networks

Changes in extracellular calcium levels (from 2 to 1 mM) in cultured hip-
pocampal neurons led to a reduction of the mean duration time of the first
burst, but not the second (Fig. 0.8A,C and table B in S1 file). Thus to an-
alyze the underlying mechanism, we used the present depression-facilitation
model. Indeed, synaptic vesicular release is mediated in large by calcium-
dependent mechanisms and is correlated with calcium transients in presynap-
tic terminals [25]. In our model, as synchronous EPSCs are generated, synap-
tic facilitation (variable x in system 1) increase reflects that calcium concen-
tration is built up in the presynaptic terminal and as a result, it increases the
vesicular release probability. Thus, in principle, changing the extracellular
calcium concentration should affect the steady state facilitation steady state
(parameter X in equation 1), such that X = X(Ca0ex) + a(Caex − Ca0ex),
where Ca0ex is the initial extracellular calcium concentration and Caex is the
new one.

Figure 4

Calcium-dependence of reverberation bursts in small networks.
(A) Evoked bursts recorded after exchanging the medium from
2 mM CaCl2 and 1 mM MgCl2 to 1 mM CaCl2 and 2 mM MgCl2.
(B) Simulated response to evoked bursts: the extracellular concen-
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tration change is modeled by adjusting the parameter X to approxi-
mate the burst duration variation within the calcium concentration
decrease. (C) Comparison of the burst durations demonstrating
a reduction in the duration of the 1st burst (35 seconds interval
burst) but not the 2nd burst (5 seconds interval burst), when [Ca2+]
was reduced and [Mg2+] increased. We compare the first and sec-
ond burst durations of the model for value of X = 0.50 given in
Table 1 and X∗ = 0.4925, which account for the burst durations
variations due to calcium concentration changes observed in left.

To account for the extracellular calcium decay, we diminished the param-
eter X (from 0.5 to a value 0.4925), which led to a reduction of the first mean
duration time, while the second burst time was not affected, in agreement
with the experimental data. The effect of changing the parameter X on the
release probability becomes clear when comparing the dynamics of the fa-
cilitation variable x(t) (the probability is proportional to x(t)), during the
bursts: in control conditions, the facilitation variable x(t) varies in the range
[0.5 − 0.75] (Fig. 0.8b), while after changing X to 0.4925, it varies in the
range [0.49 − 0.53], this large difference explains that a small change in X
affects drastically the second burst duration. The parameter X is singu-
lar: a small variation leads to a large change in the network dynamics. This
effect is intrinsic to all depression-facilitation models. The interpretation of
X is certainly link to calcium, where it is known that small fluctuations in
the residual calcium affect the release probability. Thus in that context, the
models reflects this specific non-robust property. New modelings and analysis
at a biophysical level are certainly needed to better understanding how the
parameter X is linked to biophysical quantities such as the residual calcium.
To conclude, this change on only one parameter allows to account for three
constraints (histogram of the first, second (after 5s) and third burst(35s)),
demonstrating the robustness of the model. Finally, the very small change
in the variable X shows that it is certainly a singular parameter with re-
spect to the steady calcium concentration, the dependency of which should
be certainly studied in future works. In figures 0.8B-C, we show an agree-
ment between the simulated and experimental burst duration. Indeed, we
have shown here that the duration of the first evoked burst is predominantly
controlled by synaptic facilitation, which is regulated by the extracellular
calcium concentration.
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0.5 Reverberation in larger scale neuronal network

To confirm that bursting reverberation was not only present in small neu-
ronal islands, but could also be generated in integrated networks taken from
brain tissue, we recorded pyramidal cells from acute hippocampal slices. By
stimulating Schaffer collaterals, we were able to generate a burst that lasted
283.6 ± 26.9 ms (n=22) (Fig. 0.8A and table S1), which matched (Fig. 0.8B-
C) the numerical simulations from the depression-facilitation model (eq. 1),
where the new parameters are defined in Table 1. We compared in fig. 0.8D,
the statistics of experimental data and numerical simulations of bursting du-
rations at the initial stimulation times 5 and 35 s. The model reveals the
higher degree of connectivity J and the longer depression time tr = 20s.

Figure 5

Reduction of burst duration in hippocampal slices and facilitation-
depression synaptic model. (A) Bursts (1,2 and 3) in pyramidal
cells from hippocampal acute slice evoked by a single stimulation of
Schaffer collaterals alternately at 5 and 35 seconds intervals, show-
ing a reduction in burst duration when the bursts are generated in
shorter intervals. (B) Following the experimental protocol, we sim-
ulated the mean firing rate response (equation 1), and generating
bursts at similar time intervals (a, b and c) as in the intracellular
recordings. The facilitation and depression variables show the level
of neuronal activity underlying the overall dynamics. (C) Magni-
fication of the evoked bursts (from A1, 2 and 3) and the simulated
response (B a, b and c). (D) (Up) Comparison between experi-
mental data and numerical simulations of bursting durations at the
initial stimulation time, 5 and 35 s intervals. (Down) Burst dura-
tion ratios of the 2nd and 3rd to the initial burst (experimental
data and numerical simulations).

0.6 The bursting duration depends on synaptic AMPA
receptors

To confirm the synaptic origin of the reverberation, we used CNQX (AMPA
receptor antagonist, 1 µM) that eliminated the bursting reverberation (Fig.
0.8A-B). Thus the reverberation time involves AMPA receptors. Finally,
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to confirm the role of presynaptic neurons in generating the reverberation,
we directly injected a current of 100 pA into the patched pyramidal neuron
to trigger bursting, thus bypassing presynaptic activation. This did not in-
duce depression in bursts evoked at 5 and 35 s intervals (Fig. 0.8). Hence
bursting duration requires both AMPA receptor dynamics and activation of
presynaptic neurons.

Figure 6

The bursting duration in slices depends on synaptic AMPA re-
ceptors. (A) CNQX (1 µM) eliminated the bursting reverberation. (B)
Bursting duration at 0, 5, and 35 s before and after CNQX application. (*P
< 0.05, compared with 0 s, Student’s paired t-test). Ratio of bursting du-
ration at 5 s before and after CNQX application (*P< 0.05, compared with
control, Student’s paired t-test, n=4). (C) Injection of 100 pA positive cur-
rent into the patched pyramidal neuron triggered bursting without depression
in 5 and 35 s interval, confirming that the bursting duration is synaptically
dependent.

0.7 Bursting reverberation is dependent on extracel-
lular calcium levels in large networks

To further investigate the properties of the reverberation, we evoked a burst
triggered by a single synaptic stimulation at 5 and 35 s intervals in the pres-
ence of low extracellular calcium (1.3 mM [Ca2+] and 2.5 mM [Mg2+]). We
found a reduction in the duration of the first burst, but not the second one,
as reported in the islands of neurons (Fig. 0.8). A similar reduction is
obtained in the depression-facilitation model when we change the associated
parameter X (as discussed in section 0.4) which reflects the change in the
steady state calcium concentration (Fig. 0.8 and table B in S1 file), confirm-
ing that changes in burst reverberation due to a change in the extracellular
calcium concentration affects facilitation.

Figure 7

Calcium-dependence of reverberation bursts in large networks. (A)
Evoked burst triggered by a single stimulation of Schaffer collaterals in hip-
pocampal slices at 5 and 35 s intervals in the presence of low [Ca2+] solution
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(1.3 mM [Ca2+] and 2.5 mM [Mg2+]). (B) Comparison of the burst du-
rations for two different calcium concentrations, leading to a reduction of
the 1st burst duration (35 seconds interval burst) but not the 2nd burst (5
seconds interval burst), after low [Ca2+] solution application. (*P< 0.05,
compared with 0 s, Student’s paired t-test). (C) Calcium reduction is mod-
eled by changing the parameter X, which determines the steady state value
of the facilitation variable x. (D) First and second burst durations for value
of X = 0.50 (control Table 1) and X = 0.4925, which describes the burst
duration variations due to calcium concentration changes observed in A and
B.

0.8 Blocking energy metabolism of astrocytes does not
affect bursting reverberation

Astrocytes have been proposed to contribute to postburst depression of re-
lease probability at CA3-CA1 excitatory synapses [26, 27]. Hence, we first
investigated whether astrocytes respond to the evoked neuronal bursting.
We found that astrocytes display depolarization of their membrane poten-
tial synchronously to neuronal bursting (Fig. C in S1 file). We then tested
whether the burst long-lasting depression that we found in hippocampal slices
was due to astrocytes, by evoking bursts before and after application of the
astroglial metabolic poison FAC (fluoroacetate, 5 mM). However, neuronal
bursting was unchanged by inhibition of astroglial metabolism. Hence, these
data suggest that astrocytes are not directly involved in controlling bursting
reverberation.

Discussion

Synaptic properties shape synchronous neuronal burst-
ing and reverberation time

The physiological data obtained from small neural networks and the com-
putational simulations reveal that the bursting reverberation essentially de-
pends on synaptic properties. The contribution of the neuronal electrical
property (involving channels, membrane capacity,..) in shaping the bursting
time was already ruled out in [9]. From our modeling, we found here that
synaptic facilitation at synapses is responsible for prolonging the network
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activation and it decays with a time scale of τf = 1.3 s, while with fur-
ther stimulation, synaptic depression dominates the network recovery with
a decay time of the order of tr = 2 s (culture) and tr = 20 s (slices). These
parameters could vary with neuron types and for cortical neurons, the depres-
sion rate was estimated to be 10 times slower τd = 0.2 s [15], suggesting that
various neurons are characterized by specific facilitation-depression param-
eters. Finally, the time course of the depression variable we have reported
here is in agreement with fluorescence imaging and electrophysiology data
[28, 29].
From the depression-facilitation synaptic properties, we found that there is
an optimal network connection, which sustains optimal burst duration (Fig.
0.8). This prediction remains to be tested experimentally. We summarized
in Fig. 0.8 changes with neuronal connectivity of burst durations obtained
for neural network in slices. The ratio of the second to the first burst with
respect to the total synaptic connectivity is shown in Fig.0.8 and present
clear differences of evolution between Culture and slices.

Figure 8

Reverberation time as a function of the synaptic connectivity (Slices).
(A) Burst duration time as function of the network connectivity
(parameter J) for different values of the facilitation parameter K
and (B) the depression parameter L, (other parameters are de-
scribed in Table 1). We indicate the position of variable extracted
for the experimental datas, which lie close to the maximum.

Figure 9

Ratio(2nd/1nd) of Reverberation duration time as a function of the
synaptic connectivity.(A) Culture (B) Slices.

Furthermore, synaptic facilitation seems to be triggered by calcium dy-
namics, since changing the extracellular calcium concentration in both cul-
ture and slices (Figs. 0.8 and 0.8) affected the first burst duration, but not
the second one. Using our modeling approach, we conclude that this change
in external calcium alters the steady state facilitation (X variable) in the
second equation in 1. This internal state, which is calcium dependent, de-
termines the length of the first burst duration, but does not influence the
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depression properties. This variable is very sensitive, suggesting that it de-
pends on singular perturbation manner on the real physical parameters.
We confronted here the classical depression-facilitation model 1 [15] to ex-
perimental data recorded from network at various sizes, from which we esti-
mated the associated parameters. In previous studies, this model was studied
either theoretically [15] or applied to characterize synaptic properties of di-
rectly connected neurons. Using this framework, we have now found some
parameters for depression, facilitation and network connectivity that can re-
produce bursting for different size neural networks. We conclude that the
depression-facilitation dynamics can describe bursting in neural networks of
various sizes. It is possible that intrinsic properties interact with the net-
work mechanism in bursting and depression, but the present study, as well
as experimental evidence [21], indicate that depletion of synaptic vesicles is
the primary reason for the time dependent suppression of network bursts.

Bursting Reverberation is an intrinsic property of suf-
ficiently connected neuronal networks

Because the mean-field system of equations (system 1) does not depend on
the number of neurons, but rather on the density of synapses per neurons,
we conclude that the bursting reverberation present in our model does not
depend on the size of the neuronal ensemble, but rather on its degree of
connectivity (parameter J), a prediction that we found in culture and slices.
Indeed, we found that the bursting reverberation occurs also for large ensem-
ble of connected neurons (slices). In addition, a similar model was recently
used to analyze working memory behavior, which enables the temporary
holding of information in the brain for several seconds. It was suggested
that calcium mediates synaptic facilitation in the recurrent connections of
neocortical networks [15], and here we confirm this property in small and
larger neural networks. Furthermore, we use the invariance by scaling of
our model to infer that reverberation should further persist in any larger
networks, possibly underlying higher brain function.
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The average synaptic connectivity determines the burst-
ing reverberation time

Using the present modeling, we have found that increasing synaptic strength
J in equations 1 (Fig. 0.8 and C in S1 file), which reflects the number of
functional synapses between neurons, is associated with increasing the rever-
beration time duration in a certain range, before the maximum is achieved.
Synaptic plasticity is also associated with an increase in synaptic strength
and in the mean number of connections. Our result suggests that although
synaptic formation might increase linearly in a long-term learning process,
the bursting window, which characterizes flash memory, is first small and the
size increases sublinearly before it reaches a maximum, where a large num-
ber of synapses are required to observe a significant change in the bursting
response time (Figs. 0.8 and C in S1 file). This is certainly reminiscent of
the nonlinear process associated with learning.
It is also intriguing that the islands of neuronal network that we have charac-
terized operate in a regime close to the optimal burst response (Fig. 0.8) and
it would be interesting to determine what are the mechanisms that ensure
the stability of the neural network at this value. This can either be due to
internal neuronal dynamics or maintained by the network spontaneous activ-
ity. Furthermore, although the spontaneous activity did not contribute much
in small neurons, it could have much more consequences in larger neuronal
ensemble leading to spontaneous Up-states for example.
Finally, changing the depression and facilitation properties of synapses dras-
tically affects the network connectivity, leading to a change in the amount
of synapses associated with the maximal burst duration. We propose that
pathological synapses, where the facilitation-depression properties are mod-
ified, will affect the neural network properties, especially associated with a
significant change in bursting duration for small neuronal ensembles and with
the optimal working memory response time for larger groups. It would be in-
teresting to test whether such depression-facilitation properties are modified
in some brain disorders and how it affects the burst duration.

Materials and Methods

Electrophysiology in hippocampal microcultures. The methods are
detailed elsewhere [9]. In brief, dissociated hippocampal neurons, diluted
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to 5-7 x 104 cells per ml, were plated on agarose-covered glass coverslips
sprayed with fine droplets of substrate solution containing rat tail collagen
(BD biosciences) at 1 mg/ml and poly-D-lysine (Sigma) at 0.3 mg/ml. These
permissive islands allow the growth of networks of 5-30 neurons, which make
extensive intrinsic connections.
At 2-3 weeks in culture, neurons were recorded in standard HEPES-buffered
medium, containing 2 mM CaCl2 and 1mM MgCl2. Patch pipettes contained
biocytin (0.4 %) to visualize the neurons after termination of the experiments.
In some experiments Alexa-Fluor 555 was added to the internal medium to
visualize live neurons. Bursts were evoked either by injecting 5 ms depolar-
izing current pulses sufficient to evoke a single action potential in one neuron
in current-clamp mode or by a 5 ms depolarization to 0 mV in voltage-clamp
mode.
Network burst duration was estimated empirically as the time from the onset
of the evoked action potential generating the burst to the time point when the
falling phase of the polysynaptic current (PSC) crossed the threshold (at half
of the averaged PSC amplitude). Signals were amplified with a Multiclamp-
700B amplifier and recorded with Clampex 9.2 software (Axon Instruments,
Union City, CA). Experiments were approved by the Weizmann Institutional
Animal Care and Use Committee in accordance with EU directives Protocol
Number:02740413-2
Electrophysiology in acute brain slices Experiments were carried out
according to the guidelines of the European Community Council Directives
of January 1st 2013 (2010/63/EU) and were approved by the local animal
welfare committee (certificate A751901, Ministere de l’Agriculture et de la
Peche). All efforts were made to minimize the number of animals used and
their suffering. Experiments were performed on 17- to 25-day old C57BL6
mice. For all analysis, mice of both genders and littermates were used. Acute
transverse hippocampal slices (400 m) were prepared as previously described
([30]). Slices were maintained at room temperature in a storage chamber
perfused with an artificial cerebrospinal fluid (ACSF) (containing 119 mM
NaCl, 2.5 mM KCl, 2.5 mM CaCl2, 1.3 mM MgSO4, 1 mM NaH2PO4, 26.2
mM NaHCO3, and 11 mM glucose, saturated with 95% O2 and 5% CO2,
pH 7.4, 320-330 mOsm) for at least 1 h. Slices were transferred to another
storage chamber with the same ACSF with additional 100 µM picrotoxin at
least 30 min before recording. Slices were then transferred to a submerged
recording chamber mounted on an Olympus BX51WI microscope equipped
for infrared-differential interference (IR-DIC) microscopy and were perfused
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with ACSF at a rate of 1.5-2 ml/min at room temperature. All experiments
were performed in the presence of picrotoxin (100 µ M). Somatic whole-cell
recordings were obtained from visually identified hippocampal CA3 and CA1
pyramidal cells, using 5-8 MΩ glass pipettes filled with 105 mM Kgluconate,
30 mM KCl, 10 mM HEPES, 10 mM phosphocreatine, 4 mM Mg2-ATP,
0.3 mM Tris-GTP, and 0.3 mM EGTA (pH 7.4, 280 mOsm). Synaptically-
evoked action potential bursts were triggered by a stimulation of Schaffer
collaterals (10 mA, 50 µs) with an ACSF-filled glass pipette. Bursts were
recorded in the presence of 100 µM picrotoxin at a resting membrane po-
tential of -70 ± 2 mV. The whole-cell recording pipette was placed 50-100
µm away from the stimulation pipette. In the experiment of low [Ca2+]o, to
keep extracellular divalent ion concentration constant, CaCl2 was reduced to
1.3 mM while MgSO4 was increased to 2.5 mM. Recordings were acquired
with Multiclamp-700B amplifiers , digitized at 10 kHz, filtered at 2 kHz,
and stored and analyzed on a computer using pClamp 10 and Clampfit 10
software. All data are expressed as mean ± SEM. Statistical significance
for comparisons was determined by Student’s paired t-test. Picrotoxin was
obtained from Sigma and CNQX was from Tocris.
All simulations were run with Matlab. The computation of the reverberation
time is presented in the S1 File.
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Table 1: Model parameters.
Parameter Islands Acute slices

τ 0.01s [22] 0.01 s
tf 1.3s (compared to 1.5s in [22]) 1.3 s
tr 2 s 20 s
J 1.98 2.06
K 0.004Hz [15] 0.004 Hz
L 0.0054 Hz (compared to 0.005 in [13]) 0.037 Hz
X 0.5 [15] 0.5
H 50 Hz [15] 50 Hz
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Supporting Information

The Supporting Information contains:

• Table A: Burst durations in island cultures and acute slices.

• Table B: Comparison of burst durations for different extracellular cal-
cium concentrations

• A derivation section for formula [5]: Analytical estimation of the rever-
beration time TR

• 5 figures described below:

Figures in the Supporting Information file

• Figure A. Reverberation bursting ratio when the interval between pulses
varies. Using the parameters for culture (see table A in S1 file, the ratio
converges to one after ten seconds.

• Figure B. Effect of noise on the reverberation burst. (A) Burst
duration after the first and the second pulse as a function of the noise
amplitude σ, for each value of the noise amplitude σ (500 runs). (B)
Numerical simulations of the evoked bursts, generated at 5 and 35
seconds intervals with a source noise, extracted from the experimental
data (σ = 2 Hz). Spontaneous activity is not enough to generate a
response comparable to the evoked one.

• Figure C. Blocking astroglial metabolism does not affect the
bursting reverberation. (A) Evoked burst triggered by a single
synaptic stimulation with a 5 s interval in the presence of fluoroacetate
(FAC, 5 mM). (B) Simultaneous depolarization of astrocyte during the
bursting pulse. (C) Bursting duration at 0 and 5 s before and after
FAC application. (∗ ∗ P < 0.01, compared with 0 s, Student’s paired
t-test). (D) Ratio of bursting duration at 5 s before and after FAC
application (P > 0.05, compared with control, Student’s paired t-test,
n=4).

• Figure D. Comparison of system of equations 1 (continuous
line) and the approximated system 2 (dashed line). We use
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three different values of the connectivity parameter J . The firing rate h,
the facilitation x and the depression y variables are plotted as functions
of time. For a low enough connectivity parameter J , the firing rate is
well approximated.

• Figure E. Comparison between the depression variable y esti-
mated by equation 8 (blue) and the exact one obtained by
numerical simulation of system 2 (black).

• Figure F. Comparison between numerical simulations and es-
timates of the reverberation time TR. The reverberation time is
plotted as a function of J for the exact model (solid line), the approx-
imated model (dash black line), and the estimates given by equations
37 (dash red line) and 39 (blue dash line).
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