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Recovering a stochastic process from noisy ensembles of single-particle trajectories is resolved here using the
coarse-grained Langevin equation as a model. The massive redundancy contained in single-particle tracking data
allows recovering local parameters of the underlying physical model. We use several parametric and nonparametric
estimators to compute the first and second moments of the process, to recover the local drift, its derivative, and
the diffusion tensor, and to deconvolve the instrumental from the physical noise. We use numerical simulations to
also explore the range of validity for these estimators. The present analysis allows defining what can exactly be
recovered from statistics of super-resolution microscopy trajectories used for characterizing molecular trafficking
underlying cellular functions.
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I. INTRODUCTION17

The redundancy of many short single-particle trajectories is18

necessary to extract physical parameters from empirical data19

at a molecular level [1–3], while long isolated trajectories20

have been used to extract second order properties of a21

Brownian motion using mean-square displacement analysis22

[4–7]. Some geometrical properties can also be recovered23

from long trajectories, such as the radius of confinement for24

a confined Brownian motion [8]. In the context of cellular25

transport (amoeboid), high resolution motion analysis of long26

trajectories [9] in microfluidic chambers containing obstacles27

revealed different type of cell motions. Depending on the28

obstacle density, crawling was found at low density of29

obstacles [10] and directed and random phases can even be30

differentiated. In high density regions, the motion is rather31

directed from obstacle to obstacle [11].32

Under additional assumptions about the physical process33

and with the advent of massive high resolution microscopy34

data, it has been recently possible to recover additional35

features from many short trajectories such as the local36

drift, the diffusion tensor, and even potential wells that are37

refined local structures, generating confinement due to a38

direct field of forces [2,3,12,13]. Moreover, with a model39

of obstacles organization, the map of diffusion coefficient40

can be converted into a density of obstacles [14]. Several41

approaches have been proposed to reconstruct diffusion42

properties from empirical estimators of a large ensemble of43

single noisy trajectories [15,16], even when trajectories are44

sampled and recorded points contain additional noise due to45

background limitations [17]. Precise and careful estimates46

[15,16] have been obtained for pure diffusion processes47

(no drift).48

In this article, we present a general analysis of short49

stochastic trajectories, where the stochastic motion contains a50

deterministic drift that may vary in space. The drift analysis is51

relevant when a tracked particle experiences direct interactions52

or becomes confined by a potential well, that needs to be53

resolved and whose parameters are extracted from data.54

Because empirical data can be potentially noisy, the drift term55

can be affected by measurement noise, such as tracking noise, 56

thus requiring a careful interpretation of the data analysis. As 57

a result, we see here that when a stochastic particle crosses 58

a potential well, the second derivative of the potential well 59

is an additional term that contributes to the expression of the 60

measured diffusion coefficient. Thus, a deconvolution of the 61

trajectories is needed to remove instrumental noise or tracking 62

error that affects the recovery of the physical motion from 63

measured trajectories. 64

Deriving analytical formulas allows resolving precisely 65

the contribution of each term and recovering the physical 66

dynamics by computing the first and second moments from 67

data. Traditionally, empirical data are presented as a collection 68

of discrete trajectories obtained at a fixed time resolution �t , 69

which are corrupted by noise that changes their exact location 70

(Fig. 1). To recover the physical process, we present parametric 71

and nonparametric estimators and the underlying physical 72

process, modeled here as a coarse-grained Smoluchowski limit 73

of Langevin’s equation. In addition to several estimators and 74

their analysis, numerical simulations are used to explore the 75

range of validity of these estimators. 76

One of the main results can be summarized as follows: 77

Consider an m-dimensional stochastic process 78

Ẋ = A(X) +
√

2Dẇ, (1)

where a is a vector field and �w the classical m-dimensional 79

centered Brownian motion of variance 1. The diffusion tensor 80

is assumed to be a constant D. The observed motion is 81

Ẏ = Ẋ + σ η̇, (2)

where η is an m-dimensional standard Gaussian and σ is a 82

small parameter. Then, the estimator for the drift is 83

a�t (x) = E

[
Yn+1 − Yn

�t
|Yn = x

]

= A(x) + o(�t) + O(σ 2), (3)

1539-3755/2015/00(0)/002100(11) 002100-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.00.002100
holcman
Sticky Note
remove the symbol Delta here.



N. HOZE AND D. HOLCMAN PHYSICAL REVIEW E 00, 002100 (2015)

FIG. 1. An observed trajectory (grey dashed line) is obtained
as the sum of physical trajectories (black line) with an additional
instrumental noise. At constant time intervals, the physical trajectory
is subsampled (black circles). Instrumental noise perturbs the exact
localization, and observed points (grey stars) are positioned in a
neighborhood of physical ones. The present method is to recover
the physical trajectories from noisy observations.

and the estimated diffusion coefficient relates to the physical84

parameter by85

D�t (x) = E

[‖Yn+1 − Yn‖2

2m�t
|Yn = x

]

= D + σ 2

�t
+ σ 2

m
div(A) + O(�t), (4)

where div(A) is the divergence of the drift vector. These86

new formulas show how spatial variations of the drift affect87

the measured diffusion tensor. The formulas for general88

nonparametric empirical estimators are given by formulas89

(A3) and (A4), while for parametric ones, they are given90

for an Ornstein-Uhlenbeck (OU) process by relations (48),91

(49), and (51) obtained with an approximated probability92

density function (PDF) and by Eqs. (54) and (55) for the exact93

one.94

This article is organized as follows: the first part is dedicated95

to the construction of nonparametric empirical estimators from96

a stochastic analysis in the entire space R. Second, we derive97

analytical formulas for the first and the second moments.98

We apply these results to parametric estimators of an OU99

process and obtain various formulas. In the third section, we100

extend our result to a diffusion process in higher dimensions101

Rm, m � 1. In the last section, we present several parametric102

estimators based on a maximum-likelihood procedure, with103

applications to an OU process. The analytical formulas for104

the estimators are compared to numerical simulations. We105

conclude that this analysis supports the view that biophysical106

properties of a membrane can be recovered from the empirical107

estimators of many single-particle trajectories and potential108

wells are physical objects [2,3] and not artifacts of tracking109

algorithms.110

II. ESTIMATIONS OF A STOCHASTIC PROCESS USING 111

NONPARAMETRIC ESTIMATORS 112

A. Stochastic model 113

The physical motion of a stochastic particle is modeled by 114

the Smoluchowski limit of the Langevin equation resulting in 115

the equation of motion 116

Ẋ = a(X) + b(X)ẇ, (5)

where a is a deterministic drift, b the diffusion tensor, and w 117

the classical Wiener δ-correlated noise. The Ito integral leads 118

to 119

X(t) = X(u) +
∫ t

u

a(X(s))ds +
∫ t

u

b(X(s))dws (6)

and at times 0,�t, . . . ,n�t , 120∫ (n+1)�t

n�t

a(X(s))ds = a(Xn)�t + o(�t) (7)

and 121∫ (n+1)�t

n�t

b(X(s))dws = b(Xn)�w, (8)

the discrete approximation sequence is 122

Xn+1 = Xn + a(Xn)�t + b(Xn)�w, (9)

where Xn = X(n�t). The position Xn of the physical process, 123

recorded at increment time step �t , suffers from an additive 124

Gaussian noise, added to the subsampled points. Thus, the 125

observed points are described by 126

Yn = Xn + Zn, where Zn = ση n, (10)

and ηn is a one-dimensional Gaussian variable. We present 127

various statistical parametric and nonparametric approaches to 128

recover the underlying stochastic component of the continuous 129

variable X from the empirical measured sequence Yn. 130

B. Recovering the empirical transition probability density 131

function in R 132

We compute here the transition probability of the observed 133

motion p(y|x) = Pr{Yn+1 = y|Yn = x} in one dimension 134

when the diffusion tensor b(Xn) = √
2D is uniform in space: 135

p(y|x) = p(Xn+1 + Zn+1 = y|Xn + Zn = x). (11)

The two processes Xn and Zn are independent and, in R, we 136

have 137

p(y|x) =
∫
R

p(Xn+1 + Zn+1 = y|Xn = x1)

×p(Zn = x − x1)dx1

=
∫
R

∫
R

p(Xn+1 = y1,Zn+1 = y − y1|Xn = x1)

×p(Zn = x − x1)dx1dy1

=
∫
R

∫
R

p(Xn+1 = y1|Xn = x1)p(Zn+1 = y − y1)

×p(Zn = x − x1)dx1dy1
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=
∫
R

∫
R

p(Xn+1 = y1|Xn = x1)

× e
− (x−x1)2

2σ2

σ
√

2π

e
− (y−y1)2

2σ2

σ
√

2π
dx1dy1. (12)

For �t � 1 and Xn+1 − Xn ∼ N (a(Xn)�t,
√

2D�t), the138

PDF is139

p(Xn+1 = y1|Xn = x1) = e− [y1−x1−a(x1)�t]2

4D�t√
4πD�t

, (13)

which gives that140

p(y|x) =
∫
R

∫
R

e− [y1−x1−a(x1)�t]2

4D�t√
4πD�t

e
− (x−x1)2

2σ2

σ
√

2π

e
− (y−y1)2

2σ2

σ
√

2π
dx1dy1

=
∫
R

e
− (x−x1)2

2σ2

σ
√

2π

e
− [y−x1−a(x1)�t]2

2(σ2+2D�t)√
2π (σ 2 + 2D�t)

dx1.

To obtain an explicit expression of this convolution, we use141

the change of variable x1 = x + ση, where σ � 1:142

p(y|x) =
∫
R

e− η2

2√
2π

e
− [y−x−ση−a(x+ση)�t]2

2(σ2+2D�t)√
2π (σ 2 + 2D�t)

dη.

Using a Taylor expansion, we have a(x + ση) = a(x) +143

σηa′(x) + o(σ ) and144

p(y|x) =
∫
R

e− η2

2√
2π

e
− {y−x−a(x)�t−ση[1+a′(x)�t]}2

2(σ2+2D�t)√
2π (σ 2 + 2D�t)

dη.

This integral can be regarded as the convolution of two145

Gaussian functions over the real line, and we easily obtain146

that147

p(Yn+1 = y|Yn = x) = e
− [y−x−a(x)�t]2

2σ2
�t

(x)

σ�t (x)
√

2π
, (14)

where148

σ 2
�t (x) = 2σ 2[1 + a′(x)�t] + 2D�t + O(�t)2. (15)

We conclude that the transition probability of the observed149

process Yn is Gaussian and Yn+1 − Yn ∼ N (a(Yn)�t,σ1(Yn)).150

The observed motion is thus defined by the discrete151

scheme 152

Ỹ�t (t + �t) = Ỹ�t (t) + aobs(Ỹ�t )�t + σobs,�t (Ỹ�t )√
�t

�Wt,

(16)

where �Wt = W (t + �t) − W (t) and W is a Brownian 153

motion of variance 1 and 154

aobs(x) = a(x) (17)

σobs,�t (x) = σ�t (x)

=
√

2σ 2[1 + a′(x)�t] + 2D�t + O(�t)2. (18)

This approach allows defining the continuous process Ỹ�t 155

from the approximation at the scale �t ; it is a solution of 156

the stochastic equation 157

dỸ�t (s) = a(Ỹ�t )ds + σ�s(Ỹ�t )√
�t

dWs. (19)

The drift of the observed process at a time resolution �t is 158

the same (at first order in σ ) as the physical one, while the 159

diffusion tensor is changed and given by formula (15). 160

III. ESTIMATING THE DRIFT AND DIFFUSION TENSOR 161

Optimal estimators of the physical process (5) are con- 162

structed from Feller’s formula [1,3,18,19], 163

a(X) = lim
�t→0

E(X(t + �t) − X(t) | X(t) = X)

�t
, (20)

where the averageE(· | X(t) = X) is taken over the trajectories 164

passing through point X at time t . Similarly, the second 165

moment is given by 166

2bij(X) = lim
�t→0

E[(X(t + �t) − X(t))i(X(t + �t) − X(t))j |X(t) = X]

�t
. (21)

In practice, this inversion procedure requires combining167

several independent trajectories passing through each point of168

a domain. The drift and the diffusion tensor can be recovered169

from many empirical trajectories. In the next section, we170

generalize these formulas to extract the underlying physical171

processes (drift and tensor) from observing a discrete ensemble172

of trajectories Yn at time resolution �t .173

A. Recovering the drift in dimension 1174

The infinitesimal operator of the observed process Yn175

defined by Eq. (10) is Gaussian and the associated stochastic176

discretization equation is Eq. (16) (Sec. II B). Thus, an177

estimator for the drift at a time resolution �t of the observed178

process is 179

a�t (x) = E

[
Yn+1 − Yn

�t
|Yn = x

]

= 1

�t

∫
R

(y − x)p(Yn+1 = y|Yn = x)dy

= a(x) + o(1). (22)

The average Eq. (22) computed from observed trajectories 180

gives the same drift component as the initial physical process 181

in the limit 182

lim
�t→0

a�t (x) = a(x). (23)
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FIG. 2. Diffusion coefficients are estimated for (a, b) a Brownian
motion (BM) and (c, d) an Ornstein-Uhlenbeck process (OU) and
for various values of the signal-to-noise ratio (SNR) represented in a
log-10 scale. Trajectories were simulated using Euler’s scheme and
subsampled so that the observed trajectories contain 10 000 points,
and position noise σ was subsequently added to each point of the
trajectories. The diffusion coefficient D�t is estimated using formula
(A4). Black dots represent D̃ = D�t − σ 2

�t
and the continuous lines

bounding the grey area represent D̃ ± std . The diffusion coefficient
is D = 1 and for the OU process the drift is a(x) = −2x. Variations
of the SNR, defined as D

σ2
�t

, are obtained for fixed position noise (a,

c) or fixed sampling time (b, d). In (a) and (c), the positional noise
is fixed at σ = 0.1, while the sampling rate �t is varying. In (b) and
(d), the sampling time is fixed to �t = 0.001 and the position noise
σ is varying.

Thus, adding a Gaussian noise on the physical process,183

sampled at any rate, does not alter the physical deterministic184

drift at first order in σ (see Appendix B for the second order).185

B. Recovering the diffusion tensor in dimension 1186

The diffusion tensor at position x of the observed trajecto-187

ries is estimated as188

D�t (x) = E

[
(Yn+1 − Yn)2

2�t

∣∣∣∣Yn = x

]

= 1

2�t

∫
R

(y − x)2p(Yn+1 = y|Yn = x)dy

= σ 2

�t
+ D + σ 2a′(x) + a2(x)

2
�t + o(�t), (24)

where the transition probability of the observed process is189

computed from expression (14). This result shows that at a190

time resolution �t , estimator (24) contains an additional term191

σ 2a′(x) to the diffusion coefficient of the physical process.192

In practice, the field a(x) is recovered from estimator (22),193

and the resolution �t is fixed; the amplitude of the noise σ194

is calibrated from instrumental noise. It is then possible to195

recover the diffusion coefficient D. A general expression for a196

diffusion tensor D(x) is derived in Appendix B.197

Using formula (24), we estimated the diffusion coefficient198

D̃ in Figs. 2(a) and 2(b). The signal-to-noise ratio (SNR)199

is defined as D
σ2
�t

. A high SNR can be due either to a large 200

sampling rate �t or to a low positional noise. In our numerical 201

application, we first vary the SNR by fixing the amplitude of the 202

noise σ and by varying the increment �t [Figs. 2(a) and 2(c)]; 203

then we vary the parameters the other way around [Figs. 2(a) 204

and 2(d)]. We also estimated the diffusion coefficient for an 205

OU process [Figs. 2(b) and 2(d)]. These numerical estimations 206

show that the estimator for the diffusion coefficient is biased 207

for a high SNR for an OU process when the positional noise 208

σ is fixed and the time step �t increases [Fig. 2(c)]. This 209

counterintuitive result is due to the approximation (9) for the 210

physical motion Xn+1 − Xn ∼ N (a(Xn)�t,
√

2D�t), which 211

is only applicable at small time steps �t . However, this 212

approximation is perfectly valid for a Brownian motion, as 213

shown in Fig. 2(a). 214

C. Other estimators 215

For a stochastic process containing a drift component, it 216

is not possible to extract the physical diffusion coefficient 217

directly by combining the first and the second moment 218

estimators, which is in contrast with the pure diffusion case 219

(see [15,16]). We now present an estimator where the Gaussian 220

instrumental noise can be eliminated. Using the difference 221

�Yn = Yn+1 − Yn, we can rewrite 222

�Yn = a(Xn)�t + σ (Xn)�Wn + σ (ηn+1 − ηn),

�Yn−1 = a(Xn−1)�t + σ (Xn−1)�Wn−1 + σ (ηn − ηn−1),

where �Wn and �Wn−1 are two independent increments of 223

Brownian motion. The expectation is 224

E

[
(Yn+1 − Yn)(Yn − Yn−1)

�t

]
= − σ 2

�t
E

(
η2

n

) = − σ 2

�t
+o(1).

(25)

Using relation (24), we obtain that 225

E

[
(Yn+1 − Yn)2

2�t

∣∣∣∣Yn = x

]
+ E

[
(Yn+1 − Yn)(Yn − Yn−1)

�t

]

= D + σ 2a′(x) + o(1). (26)

In this estimator, the instrumental noise is averaged out. There 226

are no direct procedures to get rid of the derivative of the drift 227

term, which can be extracted from the first order moment. 228

However, computing a derivative from noisy data should be 229

done carefully as it introduces singularities and irregularities. 230

D. Empirical estimators associated to an 231

Ornstein-Uhlenbeck process 232

We now consider an OU process, 233

dX = −λ(X − μ)dt +
√

2DdW, (27)

where the PDF is 234

p(y,t |x,0) = 1√
2πD (1−e−2λt )

λ

× exp

(
− [y − μ − (x − μ)e−λt ]2

2D
λ

(1 − e−2λt )

)
. (28)
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In the discretized setting, the PDF between two time steps235

separated by an interval �t associated to the observed motion236

Yn can be computed from Eq. (12) and is given by237

p(Yn+1 = y|Yn = x)

=
∫
R

∫
R

e
− [y1−μ−(x1−μ)e−λ�t ]2

2D
λ

(1−e−2λ�t )√
2π D

λ
(1 − e−2λ�t )

e
− (x−x1)2

2σ2

σ
√

2π

e
− (y−y1)2

2σ2

σ
√

2π
dx1dy1

= e
− [y−μ−(x−μ)e−λ�t ]2

2[σ2(1+e−2λ�t )+ D
λ

(1−e−2λ�t )]√
2π [σ 2(1 + e−2λ�t ) + D

λ
(1 − e−2λ�t )]

. (29)

The local dynamics can be recovered from the trajectories by238

computing the observed drift at time scale �t , which is given239

by240

aOU
�t (x) = 1

�t

∫
R

(y − x)p(Yn+1 = y|Yn = x)dy

= −(x − μ)
1 − e−λ�t

�t
, (30)

which generalizes relation (22). Similarly, the observed diffu-241

sion coefficient is242

DOU
�t (x) = 1

2�t

∫
R

(y − x)2p(Yn+1 = y|Yn = x)dy

= 1

2�t

(
σ 2(1 + e−2λ�t ) + D

λ
(1 − e−2λ�t )

)

+ (μ − x)2 (1 − e−λ�t )2

2�t
. (31)

In Fig. 3, we estimate the local drift and diffusion coefficient243

for an OU process and compare the local estimators for the244

drift (22) with relation (30) [Fig. 3(b)]. For the diffusion245

tensor, we compare relations (24) and (31) [Fig. 3(c)]. At246

first order approximation for short time step �t , estimator247

(22) respectively relation (24)] gives results similar to Eq. (30)248

[respectively relation (31)].249

E. Estimating the motion of an immobile particle250

and criteria of detection251

When a particle is fixed at position X0, the sampled252

trajectories are generated by the noise localization with253

variance σ . Computing the first moment shows that the particle254

is not moving and the second moment is used to extract the255

variance σ . The observed dynamics is given by the stochastic256

equation257

Yn = X0 + σηn,

where ηn are independent and identically distributed Gaussian258

variables of variance 1. The transition probability reduces to259

p(Yn+1 = y|Yn = x) = p(Yn+1 = y) = e
− (y−X0)2

2σ2

σ
√

2π
,

and the empirical estimator of the drift is 260

a�t (x) = 1

�t

∫
R

(y − x)p(Yn+1 = y|Yn = x)dy

= 1

�t

∫
R

(y − x)
e
− (y−X0)2

2σ2

σ
√

2π
dy

= − 1

�t
(x − X0),

which should be compared to relation (22): the estimator now 261

depends on the time resolution �t and the location of the 262

pinned particles, which can be determined by the empirical 263

averaging 1
n

∑n
k=1 Yk . The sum is converging (in probability) 264

as n goes to infinity to the mean E(Y1) = X0. Thus, contrary to 265

the case of a physical drift, the empirical sum 1
N

∑N
k [

Y k
n+1−x

�t
] 266

converges to − 1
�t

(x − X0), which depends on the time step 267

�t . 268

Similarly the second moment estimator gives for the 269

diffusion coefficient the following expression: 270

D�t (x) = E

[
(Yn+1 − Yn)2

2�t
|Yn = x

]

= 1

2�t

∫
R

(y − x)2 e
− (y−X0)2

2σ2

σ
√

2π
dy

= 1

2�t
((x − X0)2 + σ 2). (32)

By fixing the center x = X0, the empirical estimator (32) 271

allows estimating 1
2�t

σ 2 and the variance σ . 272

This example is instructive because it allows differentiating 273

a fixed particle from one trapped in a potential well [see 274

Secs. III A and III B, formulas (22) and (24)]. In summary, 275

the following criterion can be used: the first moment (velocity) 276

computed from a sample trajectory for a fixed particle depends 277

on the time resolution �t , which is not the case for a physical 278

particle trapped in a potential well [see relation (22)]. 279

IV. ESTIMATORS FOR A MULTIDIMENSIONAL 280

DIFFUSION PROCESS IN Rm
281

We now generalize the one-dimensional results to higher 282

dimensions in Rm. We consider an m-dimensional stochastic 283

process, sampled at discrete time steps. Each point of the 284

trajectory in the discrete time approximation is obtained by 285

picking the position of the physical trajectory at times n�t , 286

Xn+1 = Xn + A(Xn)�t +
√

2D�w, (33)

where A is a vector field and �w the classical m-dimensional 287

centered Brownian motion of variance 1. The diffusion tensor 288

is a constant D. As described by Eq. (10), the observed motion 289

is 290

Yn = Xn + σηn, (34)

where ηn is an m-dimensional standard Gaussian. Similarly to 291

the one-dimensional case, we have determined the transition 292

probability between observed points and obtained estimators 293

for the drift and diffusion in Appendix C. We summarize here 294
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FIG. 3. (Color online) (a) Trajectory of a one-dimensional OU process, generated using Euler’s scheme (blue curve), and the observed
trajectory (red curve) is obtained by subsampling at �t = 0.1 and with an additional position noise of standard deviation σ = 0.05 (SNR=40).
The other parameters are fixed to D = 1, λ = 2, and μ = 0. The observed trajectories contain 10 000 points. (b) Estimation of the local drift
using Eq. (A3) (black dots), and comparison with the analytical formulas (22) (red) and (30) (blue). (c) Estimation of the local diffusion
coefficient using Eq. (A4) (black dots) and comparison with the analytical formulas (24) (red) and (31) (blue).

the new estimators for the drift,295

a�t (x) = E

[
Yn+1 − Yn

�t
|Yn = x

]
= A(x) + o(�t), (35)

and for the diffusion,296

D�t (x) = E

[‖Yn+1 − Yn‖2

2m�t
|Yn = x

]

= D + σ 2

�t
+ σ 2

m
div(A) + O(�t), (36)

where div(a) is the divergence of the drift vector.297

V. EMPIRICAL ESTIMATORS FOR A DIFFUSION298

PROCESS USING A MAXIMUM-LIKELIHOOD299

PROCEDURE300

We now construct parametric empirical estimators for a301

stochastic process using the maximum-likelihood procedure.302

In a first part, we derive a general formula to extract drift and303

diffusion coefficient parameters. Our analysis is based on ap-304

proximating the transition probability for the observed motion305

[Eq. (14)], from which we derive the probability to observe a306

trajectory conditioned on an ensemble of motion parameters.307

By finding the maximum of this conditional probability, we308

obtain the optimal parameters. We then apply this formula to309

an OU process and obtain estimators for the drift parameters310

and the diffusion coefficient. In the final part, we reapply a311

maximum-likelihood procedure to an OU process, but using312

now the exact transition probability (29) of the observed313

motion and no longer the approximation (9) for short time314

steps. We finally compare the two estimators—approximated315

and exact—of the OU process. The main assumption is that the316

drift depends on the parameters θ1, . . . ,θm. The objective of317

the maximum-likelihood method is to estimate the parameters318

θ = (θ1, . . . ,θm) and the diffusion coefficient.319

We start with a sequence of observed points (y1, . . . ,yN+1),320

generated by a stochastic model321

ẋ = a(x,θ ) + b(x)ẇ (37)

perturbed by an additive Gaussian noise, as discussed in322

the first section. To determine the parameters θ , we maxi-323

mize the transition probability conditioned on the sequences324

(y1, . . . ,yN+1). The maximum-likelihood estimator is com- 325

puted from the joint probability 326

p(y1, . . . ,yN+1; θ ). (38)

Assuming an independent and identically distributed sample, 327

we get 328

p(y1, . . . ,yN+1; θ ) =
N∏

n=1

p(yn+1|yn; θ ), (39)

where p(yn+1|yn; θ ) is the transition probability from point yn 329

at time tn to yn+1 at time tn + �t . It is given in dimension 1 in 330

the entire line when b(x) = √
2D by 331

p(yk+1|yk; θ ) = e
− [yk+1−yk−a(yk ,θ )�t]2

2σ2
�t

(yk ,θ )

σ�t (yk,θ )
√

2π
, (40)

as shown in Eq. (15): 332

σ�t (yk,θ ) = 2σ 2[1 + a′(yk,θ )�t] + 2D(yk)�t + O(�t)2.

(41)

The log-likelihood is defined as 333

	(y1, . . . ,yN+1|θ ) =
N∑

n=1

ln p(yn+1|yn; θ )

= −
N∑

n=1

ln σ�t (yn,θ )

− 1

2

N∑
n=1

[yn+1 − yn − a(yn; θ )�t]2

σ 2
�t (yn)

.

(42)

The parameters θ1, . . . ,θm and D are computed as maximizers 334

of the likelihood function and thus by differentiating 	 with 335

respect to θ1, . . . ,θm,D. The conditions ∂	
∂D

= 0 and ∂	
∂θi

= 0 336

can be rewritten as 337

∂	

∂D
= 0 = −

N∑
n=1

∂σ�t (yn,θ )
∂D

σ�t (yn,θ )
+

N∑
n=1

∂σ�t (yn,θ )
∂D

σ 3
�t (yn,θ )

× [yn+1 − yn − a(yn; θ )�t]2. (43)
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When the diffusion coefficient D is independent of the338

position, the estimator is339

D̃ = 1

2�t

(
1

N

N∑
n=1

[yn+1 − yn − a(yn; θ )�t]2

−2σ 2

(
1 + ∂a

∂x
(yn; θ )�t

))
+ O(�t). (44)

Moreover, differentiation of 	 with respect to θi , 1 � i < m,340

gives341

∂	

∂θi

= −N

∂σ�t

∂θi

σ�t

+ ∂σ�t

∂θi

N∑
n=1

[yn+1 − yn − a(yn; θ )�t]2

σ 3
�t

+ �t

σ 2
�t

N∑
n=1

∂a(yn; θ )

∂θi

[yn+1 − yn − a(yn; θ )�t]. (45)

Conditions (43) and ∂	
∂θi

= 0 thus lead to the condition on the342

parameters θ1, . . . ,θm,343

N∑
n=1

∂a(yn; θ )

∂θi

[yn+1 − yn − a(yn; θ )�t] = 0

for i = 1, . . . ,m. (46)

A. Estimating an Ornstein-Uhlenbeck process from the344

approximated transition probability345

In this section, we apply the maximum-likelihood estimator346

to an observed OU process. An OU process sampled at short347

time �t [Eq. (9)] can be approximated by348

Xn+1 = Xn − λ(Xn − μ)�t +
√

2D�w.

We construct the transition probability of the observed motion349

as350

p(Yn+1 = y|Yn = x) = e
− [y−x+λ(x−μ)�t]2

2σ2
�t

σ�t

√
2π

, (47)

where351

σ 2
�t = 2σ 2 + (2D − 2σ 2λ)�t + O(�t2).

The log-likelihood (42) is now352

	(y1, . . . ,yN+1|λ,D)

= −N ln σ�t − 1

2

N∑
n=1

[yn+1 − yn + λ(yn − μ)�t]2

σ 2
�t

.

Conditions ∂	
∂D

= 0, ∂	
∂λ

= 0, and ∂	
∂μ

= 0 lead to353

N∑
n=1

yn[yn+1 − yn + λ(yn − μ)�t] = 0,

and thus the empirical estimator λ̃ for the parameter λ is354

λ̃ = − 1

�t

∑N
n=1 yn(yn+1 − yn)∑N

n=1 yn(yn − μ̃)
. (48)

Similarly, using ∂	
∂μ

= 0, we obtain the condition 355

μ̃ = 1

Nλ̃�t
(yN+1 − y1) − 1

N

N∑
n=1

yn. (49)

By combining Eqs. (48) and (49) we obtain 356

μ̃ =
∑N

n=1 yn

∑N
n=1 yn(yn+1 − yn) − ∑N

n=1 y2
n(yN+1 − y1)

N
∑N

n=1 yn(yn+1 − yn) − ∑N
n=1 yn(yN+1 − y1)

.

(50)

Finally, using Eq. (43) we obtain for the diffusion coefficient 357

the following empirical estimator: 358

D̃ = σ 2

(
λ̃ − 1

�t

)
+ 1

2N�t

×
N∑

n=1

[yn+1 − yn + λ̃(yn − μ̃)�t]2. (51)

B. Estimating an Ornstein-Uhlenbeck process from 359

the exact transition probability 360

In the previous section, we used Eq. (9) to determine an 361

approximation of the transition probability of an observed OU 362

process, and used a maximum-likelihood estimator to extract 363

the parameters. In this section, we use the maximum-likelihood 364

method to estimate the parameters of an OU process using the 365

exact transition probability of the observed motion, given by 366

p(Yn+1 = y|Yn = x)

= e
− [y−μ−(x−μ)e−λ�t ]2

2[σ2(1+e−2λ�t )+ D
λ

(1−e−2λ�t )]√
2π [σ 2(1 + e−2λ�t ) + D

λ
(1 − e−2λ�t )]

. (52)

For a trajectory of N + 1 observed points (y1, . . . ,yN+1), the 367

log-likelihood is 368

	(y1, . . . ,yN+1|λ,μ,D)

= −1

2
N ln

(
σ 2(1 + e−2λ�t ) + D

λ
(1 − e−2λ�t )

)

−
N∑

i=1

[yi+1 − μ − (yi − μ)e−λ�t ]2

2[σ 2(1 + e−2λ�t ) + D
λ

(1 − e−2λ�t )]
.

Maximizing the log-likelihood leads for the parameters λ̃, μ̃, 369

and D̃ to the equations 370

∂	

∂D
(y1, . . . ,yN+1|λ̃,μ̃,D̃) = 0,

∂	

∂λ
(y1, . . . ,yN+1|λ̃,μ̃,D̃) = 0, (53)

∂	

∂μ
(y1, . . . ,yN+1|λ̃,μ̃,D̃) = 0.

We are left with solving the three equations. The drift term 371

appears in the expressions of λ and e−λ�t , which makes it 372

impossible to find a closed-form solution for the parameters. 373

In Fig. 4, we estimate the parameter λ using a numerical 374

optimization method. After estimating λ̃, we can estimate μ 375
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and the diffusion coefficient D by376

μ̃ = 1

N

(
N∑

i=2

yi

)
+ 1

1 − e−λ̃�t

yN+1 − y1e
− ˜λ�t

N
, (54)

D̃ = λ̃

1 − e−2λ̃�t

(
1

N

N∑
i=1

[yi+1 − μ̃ − (yi − μ̃)e−λ̃�t ]2

)

− σ 2λ̃
1 + e−2λ̃�t

1 − e−2λ̃�t
. (55)

Using numerical simulations, we now compare the two377

maximum-likelihood estimators determined in Secs. V A and378

V B. To evaluate the performance of the estimators, we379

simulated trajectories following an OU process. We fixed380

the time step �t = 0.1 and estimated λ, μ, and D for381

n = 500 observations. The average and standard deviation of382

the estimated parameters λ̃, μ̃, and D̃ are obtained by taking383

500 realizations of the process. Moreover, the parameters are384

estimated for various values of the observation noise σ . The385

results are summarized in Fig. 4. As expected, the estimator of386

Sec. V B, based on the actual transition probability of the OU387

process, gives better estimates than the estimator of Sec. V A.388

VI. DISCUSSION AND CONCLUSION 389

We presented here several empirical estimators that can be 390

used to compute the first and second moments of a stochastic 391

process from single-particle tracking (SPT) data. When a 392

Gaussian noise is added to the physical process, the analysis 393

of the estimator reveals that the drift and the diffusion tensor 394

[formulas (22) and (24)] are recovered at first order. The 395

present estimators are very different from classical mean 396

squared displacement (MSD), computed along trajectories. 397

Here the estimators are based on computing the first and 398

second moments using realization of an ensemble of many 399

trajectories. In addition, as shown in Appendix B, computing 400

the moments does not require a priori knowledge contained in 401

the probability distribution function of the process. Appendix 402

A shows how the first two moments are computed by dividing 403

the space in bins. 404

The key message of this analysis is that the drift can 405

be recovered entirely to a first order approximation in the 406

amplitude σ [relation (B7)]. When the drift varies in space, 407

the estimated diffusion tensor contains a new term which 408

is the derivative of the drift (or the divergence in higher 409

dimension) that needs to be subtracted to recover the physical 410

diffusion coefficient. 411

The present analysis provides the theoretical framework for 412

extracting physical parameters from super-resolution single- 413
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particle trajectories [2,3,20], where the drift was recovered414

and potential wells were estimated, without accounting for the415

additive Gaussian external noise. Here we have shown that,416

to a first order approximation, the additive Gaussian noise417

does not contribute to the drift estimation (only at the second418

order), allowing us to conclude that the estimation of the energy419

of potential wells is not affected (to order 1) by an external420

localization noise. This analysis confirms that the biophysical421

parameters extracted in [2,3,20] are a good approximation even422

if there is a Gaussian empirical noise added.423

Finally, another key result here is the possibility to discern424

a particle trapped in a potential well from a fixed particle,425

although their associated trajectories look similar due to426

position noise. We provided here a criterion to differentiate427

a fixed and a confined particle (Sec. III E). In particular,428

converging arrows in a vector field extracted from SPT analysis429

[2,3] reveals a physical potential well and cannot be an artifact430

of tracking fixed particles. This is even more clear when wells431

are anisotropic. However, the present analysis does not reveal432

the origin of the wells [12].433
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APPENDIX A: APPROXIMATION FORMULA FOR THE436

LOCAL DRIFT AND DIFFUSION COEFFICIENT437

Computations with the estimators developed here from em-438

pirical data depend on the following steps: starting with a sam-439

ple of Nt observed trajectories {yi(tj ), i = 1,2, . . . Nt , j =440

1,2, . . . ,Ns}, where tj are the sampling times, and Ns is441

the number of points in each trajectory, the dynamics is442

reconstructed by computing the local drift and diffusion443

coefficient of the observed diffusion process. First, the range444

of points on the line is partitioned into M bins of width r ,445

centered at xk , such that446

x1 − r

2
< min{yi(tj ), 1 � i � Nt, 1 � j � Ns}

and447

xM + r

2
> max{yi(tj ), 1 � i � Nt, 1 � j � Ns}.

The effective drift and diffusion coefficients of the observed448

diffusion process are evaluated in each bin from the empirical449

versions of the formulas [1,21]450

a�t (x) = lim
�t→0

1
�t
E[y(t + �t) − y(t) | y(t) = x], (A1)

2D�t (x) = lim�t→0
1

�t
E[[y(t + �t) − y(t)]2 | y(t) = x].

(A2)

The empirical version of Eq. (A1) at each bin point xk is451

a�t (xk) = 1

Nk

Nt∑
i=1

Ns∑
j=1,yi (tj )∈B(xk,�x)

yi(tj+1) − yi(tj )

�t
, (A3)

where B(xk,r) is the bin [xk − r/2,xk + r/2]. The condition452

yi(tj ) ∈ B(xk,r) in the summation means that |yi(tj ) − yk| <453

r/2. The points yi(tj ) and yi(tj+1) are sampled consecutively454

from the ith trajectory such that yi(tj ) ∈ B(xk,r) and the 455

number of points in B(xk,r) is Nk . Similarly, the empirical 456

version of Eq. (A2) at bin point xk is 457

D�t (xk) = 1

Nk

Nt∑
j=1

Ns∑
j=1,ỹi (tj )∈B(xk,r)

[yi(tj+1) − yi(tj )]2

2�t
. (A4)

APPENDIX B: HIGHER ORDER MOMENT ESTIMATES 458

AND GENERAL INVERSION FORMULA 459

We present now a different approach to estimate the drift and 460

diffusion coefficients by using direct regular expansion. This 461

approach does not assume any knowledge of the PDF of the 462

process and is thus applicable to any general manifold. We 463

start with the continuous stochastic equation of Eq. (9), 464

Ẋ = a(X) + b(X)ẇ, (B1)

and 465

Ẏ = Ẋ + σ η̇, (B2)

where both w and η are two independent and identically 466

distributed Brownian variables. The close stochastic equation 467

for Y is 468

Ẏ = a(Y − ση) + b(Y − ση)ẇ + σ η̇. (B3)

Using a Taylor expansion to order k, we get 469

a(Y − ση) =
k∑
0

(−σ )k

k!

∂ak(Y )

∂xk
ηk + O(σ k+1), (B4)

b(Y − ση) =
k∑
0

(−σ )k

k!

∂bk(Y )

∂xk
ηk + O(σ k+1). (B5)

Using a second order expansion we obtain that in dimension 470

1, 471

Ẏ = a(Y ) − σηa′(Y ) + σ 2

2
η2a′′(Y ) + (b(Y ) − σηb′(Y )

+ σ 2

2
η2b′′(Y ))ẇ + σ η̇. (B6)

Thus, the expectation is 472

lim
�t→0

Ew,η(Y (t + �t) − Y (t) | Y (t) = Y )

�t

= a(Y ) + σ 2

2
Eη(η2)a′′(Y ) + o(σ 2),

= a(Y ) + σ 2

2
a′′(Y ) + o(σ 2), (B7)

where we used that Eη (η 2) = 1. We conclude that at order 2, 473

a correction has to be added to the drift, but when σ is small 474

this contribution is negligible. In particular, this result shows 475

that at the first order the additive noise does not influence 476

the recovery of the vector field and local potential wells. The 477

energy is thus not affected by this additive noise. Similarly, the 478
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diffusion coefficient is computed from the second moment,479

Ew,η((Y (t + �t) − Y (t))2 | Y (t) = Y )

2�t

= 1

2
b2(Y ) + σ 2a′(Y ) + σ 2

2�t

+ 1

2
σ 2

(
b′2(Y ) + b(Y )b′′(Y )

2

)
+ o(�t) + o(σ 2).

(B8)

The analysis presented here can be generalized to n dimensions480

and does not depend on any a priori information about the PDF481

of the stochastic process to be estimated.482

APPENDIX C: DERIVATION OF THE ESTIMATORS FOR A483

MULTIDIMENSIONAL DIFFUSION PROCESS IN Rm
484

To generalize to higher dimensions the results we derived485

for dimension 1, we start with an m-dimensional stochastic486

equation that represents a physical process, sampled at discrete487

time steps of length �t :488

Xn+1 = Xn + A(Xn)�t +
√

2D�w, (C1)

where A is a vector field and �w the classical m-dimensional489

centered Brownian motion of variance 1. The diffusion tensor490

is assumed to be a constant D. As described by Eq. (10), the491

observed motion is observed by the time sequences492

Yn = Xn + σηn, (C2)

where ηn is an m-dimensional standard Gaussian. The transi-493

tion probability between points Yn and Yn+1 is494

p(Yn+1 = y|Yn = x) =
∫
Rm

∫
Rm

p(Xn+1 = y1|Xn = x1)

×p(Zn+1 = y − y1)

(Zn = x − x1)dx1d y1

=
∫
Rm

∫
Rm

p(Xn+1 = y1|Xn = x1)

× e
− ‖x−x1‖2

2σ2

(σ
√

2π )m
e
− ‖ y− y1‖2

2σ2

(σ
√

2π )m
dx1d y1.

Using the distribution xn+1 − xn ∼495

Nm(A(Xn)�t,
√

2D�t Im), we obtain that the transition496

probability is497

p(Xn+1 = y1|Xn = x1) = e− ‖ y1−x1−A(x1)�t‖2

4D�t

(
√

4πD�t)m
.

We first integrate with respect to y1 and obtain498

p(Yn+1 = y|Yn = x)

=
∫
Rm

e
− ‖x−x1‖2

2σ2

(σ
√

2π )m
e
− ‖ y−x1−A(x1)�t‖2

4D�t+2σ2√
2π (2D�t + σ 2)

m dx1.

Changing variable x1 = x + ση , with σ � 1, we obtain that 499

p(Yn+1 = y|Yn = x) =
∫
R

e− |η|2
2

(
√

2π )m
e
− [ y−x−ση−A(x+ση)�t]2

2(σ2+2D�t)√
2π (2D�t + σ 2)

m dη.

Using a Taylor expansion of the drift at the first order, 500

A(x + ση) = A(x) + σ J(x)η + o(σ ),

where J(x) is the Jacobian matrix of the vector field A at 501

position x: 502

p(Yn+1 = y|Yn = x) =
∫
R

e− |η|2
2

(
√

2π )m
e
− { y−x−A(x)�t−σ [Im+J(x)�t]η}2

2(σ2+2D�t)√
2π (2D�t + σ 2)

m dη.

Following the one-dimensional step, from a direct integration 503

we obtain 504

p(Yn+1 = y|Yn = x)

= 1√
(2π )m det �(x)

e− 1
2 [ y−x−�t A(x)]T �−1(x)[ y−x−�t A(x)],

where 505

�(x) = (σ 2 + 2D�t)Im + σ 2 B(x)BT (x)

= (2σ 2 + 2D�t)Im + σ 2�t( J(x) + JT (x)) + O(�t2)

(C3)

and 506

B(x) = Im + �t J(x). (C4)

Formula (C3) generalizes to the n-dimensional Euclidean 507

space the result of Sec. II B for dimension 1. 508

Estimation of a drift and diffusion tensor 509

To estimate the apparent drift and diffusion tensor, we 510

apply analytical expressions for the PDF [formula (C3)]. Using 511

the formula to characterize the drift at resolution �t [18] at 512

position x, we get 513

a�t (x) = E

[
Yn+1 − Yn

�t
|Yn = x

]

= 1

�t

∫
Rm

( y − x)p(Yn+1 = y|Yn = x)d y

= 1

(2π )m/2�t

∫
Rm

( y − x)d y√
det �(x)

× e− 1
2 [ y−�t A(x)−x]T �−1(x)[ y−�t A(x)−x].

Using the change of variable v = y − �t A(X) − x we obtain 514

a�t (x) = 1

�t

∫
Rm

[v + �t A(x)]
1√

(2π )m det �(x)

× e− 1
2 vT �−1(x)vdv

= A(x) + o(�t). (C5)

This approximation is valid to second order in σ (see 515

Appendix B). Similarly in the isotropic case, the diffusion 516

coefficient at position x can be recovered from the second 517

order moment approximation 518

D�t (x) = E

[‖Yn+1 − Yn‖2

2m�t
|Yn = x

]
. (C6)
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Thus, using the PDF formula (C3), we get519

D�t (x) = 1

2m�t

∫
Rm

[v + �t A(x)]T [v + �t A(x)]
1√

(2π )m det �(x)
e− 1

2 vT �(x)−1vdv

= 1

2m�t

∫
Rm

(vT v + �t(A(x)T + A(x)) + �t2 A(x)T A(x))
1√

(2π )m det �(x)
e− 1

2 vT �(x)−1vdv

= 1

2m�t
(Tr(�(x)) + O(�t2)). (C7)

Using Eq. (C3), we have520

Tr(�(x)) = m(2σ 2 + 2D�t) + 2σ 2�tTr( J(x)) + O(�t2).

(C8)

Finally,521

D�t (x) = D + σ 2

�t
+ σ 2

m
div(A) + O(�t), (C9)

where by definition, in local coordinates div(A) = ∑m
i=1

∂ai (X)
∂xi

. In general, the diffusion tensor can be approximated at order �t522

by523

D
ij

�t (x) = E

[
(Yn+1 − Yn)i(Yn+1 − Yn)j

2�t

∣∣∣∣Yn = x
]

= 1

2�t

∫
Rm

[v + �t A(x)]i[v + �t A(x)]j
1√

(2π )m det �(x)
e− 1

2 vT �(x)−1vdv

= Dij + σ 2

�t
δij + σ 2

2
( J(x) + JT (x))ij + O(�t). (C10)
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