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Abstract

The entire world and France were strongly impacted by the SARS-COV-2 epidemic. Finding
appropriate measures that effectively contain the spread of the epidemic without putting a too
severe pressure on social and economic life is a major challenge for modern predictive approaches.
To assess the impact of confinement (March 17th till May 11th) and deconfinement, we develop a
novel rate model to monitor and predict the spread of the epidemic and its impact on the health
care system. The model accounts for age-dependent interactions between population groups and
predicts consequences for various infection categories such as number of infected, hospitalized,
load of intensive care units (ICU), number of death, recovered from hospitalization and more. We
use online health care data for the five most infected regions of France to calibrate the model. At
day of deconfinement (May 11th), we find that 13% (around 4.8M) of the population is infected
in the five most affected regions of France (extrapolating to 5.8M for France). The model predicts
that if the reproduction number R0 is reduced by at least a factor of 2.5-3 for all age groups after
deconfinement, which could be achieved by wearing masks and social distancing, a significant
second peak can be prevented. However, if the reduction in R0 for the age group 0-25 would be
less and below 2 (e.g. due to school openings), a second peak with ICU saturation is unavoidable.
In that context, we argue that testing should be focused on children, but without tracing it will
nevertheless have only a very limited impact on reducing the spread.

1 Introduction

The fast spreading worldwide pandemic of SARS-CoV-2 has destabilized all major economies of the
world in only a few months, forcing most European countries into confinement. This measure has
curbed in few days the disease progression. To prepare the deconfinement and to recover economical
prosperity, most of the affected western countries rely on the efficiency of wearing masks and on
social distancing, hoping that these measures will be sufficient to prevent a second peak of infection
that could saturate hospitals and ICU. For such fast spreading and severe pandemic [1], predictive
modeling is crucial to estimate in advance the impact of deconfinement measures, because small
deviations can rapidly be exponentially amplified [2, 3, 4, 5]. Yet predicting with high accuracy
remains a major challenge during this crisis [6, 7].

Very quickly after the beginning of the pandemic, public web sites have provided daily data for
hospitalizations, ICU occupancy, deaths, recovered, etc.., which is crucial to obtain an age-stratified
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analysis [8]. The large number of severe cases in particular for the age groups 60-69 and older
than 70 has destabilized the ICUs. But this data alone provides only a partial understanding of
the mechanisms that govern the pandemic social propagation. It remains challenging to reconstruct
the pandemic dynamics from this live data for several reasons: incomplete data, change in social
interactions, or unknown fraction of the population that are asymptomatic, which are not accounted
for in public health data.

In order to understand the dynamics of SARS-CoV-2 transmission and to predict the infection
spread and the status of the health care system after deconfinement, we develop a discrete dynamical
model that we implement for 5 different age groups (group 1=0-24, group 2=25-49, group 3=50-59,
group 4=60-69, and group 5=70+) and 8 different infection categories (Tables S2 and S3). Because
the distribution of infected in the 5 most affected regions (̂Ile de France, Grand Est, Auvergne Rhône
Alpes, Hauts-de-France and Provence-Alpes-Côte d’Azur) and the rest of France is very heterogeneous
(the 5 regions together concentrate 36.9M people (67M for France) but account for 80% of the
reported cases), we focused on these 5 regions to calibrate and validate the model, and to test several
scenarios for the time after deconfinement. We found that the number of infected after lockdown
is 13% (around 4.8M) in the five most affected regions and 5.8M of the total French population, in
line with a recent report emphasizing the large number of asymptomatic in the population (15.5%
from [9]) and slightly higher than a recent estimation of 3.7M infected [10]. Because of this low
fraction of infected, a second catastrophic peak after deconfinement is unavoidable without proper
control and social distancing measures. We found that wearing masks for the entire population
could be a means to steadily prevent a second peak without the need of going through several
re- and deconfinement phases. Moreover, we show that school opening poses a serious risk that
could destabilize the deconfinement phase if social distancing measures and wearing of masks are
not rigorously followed. If testing capacities are limited, we propose to focus testing on children to
timely unravel the asymptomatic infected. However, we also find that testing without tracing only
has a very limited effect on containing the pandemic.

2 Results

The distribution of hospitalizations from public data reveals a strong heterogeneity of the infection
spread throughout France (Fig. 1A-B). We therefore focused our analysis on data from the 5 most
affected regions, which represent around 54% of the French population (36.7M) and around 80% of
the reported cases. The age resolved time series for the number of hospitalizations, ICU occupancy,
cumulative returned from hospital and cumulative deceased are very similar between the 5 regions
and the entire country (Fig. 1D-E), and the ratio of these numbers is almost constant (Fig. 1F). Thus,
our results and predictions for the 5 regions can be extrapolated to entire France by multiplying with
a factor around 1.2 instead of a factor around 2 corresponding to the population ratio.

2.1 Model calibration with public data

The present model accounts for 5 different age groups (group 1=0-24, group 2=25-49, group 3=50-
59, group 4=60-69, and group 5=70+) and 8 different infection categories (Tables S3 and S2). The
model has a time resolution of one day and uses switching probabilities to compute the daily time
evolution (see Methods). Parameters can be updated at any day to incorporate modified conditions
(e.g. lockdown or hospitalisation procedures).

To account for social interactions before confinement, we use the contact matrix between age
groups in France from [13]. Since before lockdown we did not have access to age stratified data,
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Figure 1: Public French health care data. (A) Map of France emphasizing the 5 most in-
fected regions at 6th of May: Île de France, Grand Est, Auvergne Rhône Alpes, Hauts-de-France
and Provence-Alpes-Côte d’Azur. (B) Distribution of people in ICU. (C) 5 Regions and age group
stratification. (D-E) Age resolved time series for hospitalized (1), ICU occupancy (2), cumulated
recovered from hospitalization (3) and cumulated deaths (4) for France and the 5 regions. (F) Ratio
between the data in D (entire France) and E (5 regions). The color code for the age groups is defined
in panel C. Data source [11, 12].
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we only calibrated the exponential growth rate for the number of new infections (0.18day−1, see
Fig. S1) by modifying the infectiousness parameter β (see Eq. 6 in the Methods; the infectiousness
is independent of age [14]). Using β and the contact matrix from [13] we found for the time before
confinement for the five groups the reproduction numbers [3.8, 3.1, 2.7, 2.4, 0.5] (see Eq. 7 in the
Methods). The reproduction numbers are different for each group because of the internal structure
of the contact matrix. For the averaged collective reproduction number, we obtain R̄0 = 2.5 (see
Eq. 8). If we account only for the young and active population (groups 1-3) that make most of the
social contacts, we get R̄0 = 3.2, similar to [10, 15]. To conclude, to accurately monitor the pandemic
one has to consider age dependent reproduction numbers.

After lockdown, we used the age-stratified public data for the 5 regions [11, 12] for model cal-
ibration. We changed the contact matrix to account for the reduction in social interactions (see
Methods). We then tuned our model parameters (e.g. probability to become hospitalized, probabil-
ity to develop severe symptoms, decease probabilities etc) to obtain simultaneous agreement between
all the available data and the model predictions (Fig. 2). Interestingly, the very different behaviour
of the hospitalization data for group 5 could only be accounted for by increasing the duration of hos-
pitalization over time, which probably reflects change in the policy of hospitalization for this group
(personal communication). Although the model predictions for group 5 for number of hospitaliza-
tions, cumulated death and ICU occupancy match very well with the data (magenta curves in Fig. 2
D,E,L), the model overestimates the number of recovered for this group model (Fig. 2 K) starting
around day 20 after lockdown. The exact reason is unclear, a possible explanation could be that the
number of interactions for group 5 further decreased during lockdown. At the end of the confinement
period, the model predicts that around 13% of the population has been infected (Fig. 3A), most of
them in group 1 and 2 (Fig. 3B). Finally, due to the reduced social interactions, the reproduction
numbers for the five groups after lockdown are reduced to [0.73, 1.08, 0.74, 0.67, 0.25]. The collective
reproduction number is R̄0 = 0.69, which is around a factor of 4 smaller compared to pre-lockdown.
To conclude, the calibrated and validated model precisely reproduces the available data, and can
now be used to study in detail the pandemic progression and its load on the health care system after
deconfinement.

2.2 Prediction of the pandemic without lockdown

We used the calibrated model to show the drastic consequences for the hypothetical case that the
lockdown would not have happened (Fig. 4). In the absence of confinement, we predict a total of
250,000 deaths in the 5 regions (Fig. 4D), which would extrapolate to ∼450,000 deaths in France. In
this uncontrolled case the majority of the population would become infected (around 87%, Fig. 4A),
and the ICU would remain saturated for around 50 days (Fig. 4C). Age stratified simulation results
for this scenario are shown in Fig. S2.

2.3 Prediction of the pandemic with full deconfinement and absence of social
restrictions

If all social restrictions would be alleviated after deconfinement, we predict a large second peak for
the new infections (around 6 times the first one) that would occur around mid-July (Fig. 5A) with
around 220,000 cumulated deaths for the 5 regions at the end (Fig. 5C). ICU would be saturated for
50 days (Fig. 5B), with a need 320,000 hospitalizations at the peak (Fig. S3B).

4



-20 0 20 40 60
-200

0

200

400

# 
ch

an
ge

 IC
U

-20 0 20 40 60

5000

10000

15000

# 
cu

m
ul

at
ed

 d
ea

th

-20 0 20 40 60

0.5

1

1.5

2

2.5

# 
cu

m
 re

co
ve

re
d 

ho
sp

ita
l

104
-20 0 20 40 60

1

2

3

4

5

6
# 

cu
m

 re
co

ve
re

d 
ho

sp
ita

l

104
-20 0 20 40 60
0

100

200

300

400

# 
de

at
h

Death per group
-20 0 20 40 60

100

200

300

400

500

# 
de

at
h

-20 0 20 40 60

5000

10000

15000

# 
ho

sp
ita

liz
ed

-20 0 20 40 60

500

1000

1500

2000

# 
 IC

U

0-24: group 1

25-49: group 2
50-59: group 3

60-69: group 4

>70: group 5

-20 0 20 40 60

-50

0

50

100

150

# 
ch

an
ge

 IC
U

Time [days]Time [days] Time [days]

(J) (K)

(G) (I)(H)

(E) (F)
-20 0 20 40 60

0.5

1

1.5

2

2.5

# 
ho

sp
ita

liz
ed

104

sim
data

-20 0 20 40 60

1000

2000

3000

4000

5000

# 
IC

U

(B)

(D)

(C)(A)

-20 0 20 40 60
0

5000

10000

# 
cu

m
ul

at
ed

 d
ea

th

(L)

Figure 2: Calibration of the model using age-stratified data for the 5 regions after
lockdown. We compare data (diamonds) with simulation results (continuous lines). Total number of
hospitalized (A), ICU occupancy (B), daily deaths (C) and their age group distributions (respectively
D, E and F); daily variation of people in ICU (G) and its age group distribution (H); cumulative
number of people recovered from hospitalization (I) and cumulative number of deaths in hospitals
(J) and their age group distributions (respectively K and L). Day zero corresponds to the 18th of
March.
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Figure 5: Full deconfinement without social restrictions. Simulation results for the case that
all social restrictions would be alleviated after deconfinement. New infections (A), ICU occupancy
(B) and cumulative deaths (C).

2.4 Controlling the pandemic by wearing masks

Several evidences suggest that wearing a mask could efficiently attenuate the epidemic spread [16] by
reducing the propagation of viral particles due to breathing, coughing or sneezing, as revealed by a
recent analysis using Laser Light Scattering [17]. However, as demonstrated in the case of influenza
virus, coarse and fine droplets with diameters > 5µm and < 5µm are not reduced by the same
proportion by wearing masks. Whereas course droplets are reduced by a factor of 25, fine droplets
are reduced only by a factor of 2.8 [18]. Since fine droplets contain around ten times more viral
particles than course droplets, and they stay much longer in the respiratory environment [18], we
hypothesize that wearing masks could reduce the infectiousness by a similar factor. We thus explored
how the pandemic would spread if the social interactions after deconfinement would be the same as
before lockdown, but wearing of masks would reduce the infectiousness β, and thus the reproduction
number R̄0. In Fig. 6 we tested three scenario where R̄0 is reduced by a factor of 3 (strict mask
wearing, red curves), 2.5 (less strict, blue curves) and 2 (insufficient, green curves). For comparison,
we also show the results for the no-deconfinement scenario (black curves) and the scenario with
full deconfinement (magenta curves). The cumulated number of deaths for the 5 regions is 21,000
(R0/3), 35,000 (R0/2.5 and 70,000(R0/2) (Fig. 6F) with 16%, 30% and 50% of the population infected
(Fig. 6A) .

Next we explored the consequences that children under 11 are not obliged to wear masks at
school. We assume that adults (group 2 -5) strictly wear their masks resulting in a reduction of their
infectiousness by a factor of 3, whereas the reduction for group 1 is only by a factor of 2 (Fig. 7, red
curves) or 1.5 (Fig. 7, blue curves). We found that with a reduction by a factor of 2 the deconfinement
phase remains under control with no large second peak and ICUs remain unsaturated (Fig. 7A-D,
red curves). However, by only slightly increasing R0 for group 1 by a factor of 1.33 a large second
peak emerges (Fig. 7A-D, blue curves). The number of hospitalized would reach 540,000 beginning
of August, ICU would start to be saturated around beginning of July and the cumulated number
of deceased would reach around 60,000 (around 3 times the level of end of April in the 5 regions).
This suggests that the behaviour of group1 could destabilize the deconfinement phase if not carefully
controlled.

Finally, we explored whether testing could reduce the second peak for the case that the infec-
tiousness of group2 is only reduced by a factor of 1.5 (Fig. 7A-D, green curves). We assume that
100,000 tests can be made every day, and an infected person that has been tested it is removed from
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the pool of infectious the day after testing. Because the infectious population in group 1 generates
the second peak, simulations (not shown) reveal that focusing all the testing capacities on group 1
is most effective. However, even in this case (green curves in Fig. 7) the second peak would only be
slightly reduced and the health care system would still be destabilized with 50,000 deceased people
after 150 days post confinement (mid-August).

We conclude that whereas wearing masks efficiently is key to keep the pandemic under control,
testing without tracing has only a very limited impact. In addition, it is problematic to trace children
that usually have no smartphones. Thus, school openings without efficient control can destabilize
the deconfinement phase.
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Figure 6: Effect of wearing masks after deconfinement. Wearing masks corresponds to a
reduction in infectiousness and the reproduction number R0. Comparison of three scenarios where
R0 is reduced by 3 (strict mask wearing, red curves), 2.5 (less strict, blue curves) and 2 (insufficient,
green curves). The results for no deconfinement (black curves) and full deconfinement with no
restrictions (magenta curves) are also shown for comparison. Fraction of infected people (A), daily
new infected (B), hospitalized people (C), ICU occupancy (D), daily deaths (E), and cumulative
number of deceased (F).

3 Discussion

Preventing the natural exponential spread of the pandemic is a major challenge of the deconfinement
phase. Using public health care data we developed a novel age-stratified modeling approach that
combines social interaction matrices with dynamical modeling to reproduce and predict the time
course of the pandemic spread and its consequences for the health care system. A major strength
of our approach is to simultaneously account for a variety of different age stratified data such as
hospitalization, ICU occupancy, recovered from hospitalization, which provides strong confidence for
the model predictions.

In most European countries and France, confinement has reduced the exponential growth rate
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Figure 7: Possible effect of school openings after deconfinement. Comparison of four scenarios
for the time after deconfinement where the infectiousness for group 2-4 is reduced by 3, whereas for
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exp(βt) of confirmed cases and number of death from β = 0.2 (Fig. S1) to β = 0.004 (Table S5),
which confirmed the immediate effect of the lockdown on the exponential spread of the pandemic.
Since the number of susceptible after lockdown is still very high, and asymptomatic persons are
difficult to reveal, it remains a major challenge to avoid a return to an exponential growth phase
with similar rates as before lockdown. Our detailed causal dynamical model allows to explore the
time evolution of the pandemic for various scenarios, and thus provides a tool to refine and adapt
political decisions. By continuously adapting the model parameters to real time data, simulations
can be used to predict the evolution of the pandemic in order to test and implement in advance
efficient social measures to control and contain the pandemic spread.

In the absence of social measures a catastrophic second wave is unavoidable [10, 15, 2], however,
we found that wearing masks for the entire population could prevent this to happen without the need
to go through several re- and deconfinement phases. In that context, we find that school openings
without rigorous control of wearing masks and social distancing measures poses a serious risk to
destabilize the deconfinement phase. If testing capacities are limited, we further argue that the focus
should be on testing school children to timely unravel the asymptomatic infected. However, we also
show that testing without tracing only has a limited effect on containing the pandemic.
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Supplementary Information

Methods

Model description

We developed a discrete switching model with a single day as unit timestep. Although we imple-
mented the model for 5 age groups and 7 infection categories (Tables S2 and S3), the model structure
is general such that a higher degree of diversifications can be implemented without problems. For
example, an advanced version of the model could include more age groups, and the groups could be
further divided according to female and male. A major problem was to derive a consistent initial
parametrization that is compatible with all the available data and disease properties from the liter-
ature. However, once such an initial parametrization is obtained, it is a much easier task to adapt
the model parameters to a more diversified version of model.

The model variables are:

• S(n|k): Number of susceptible persons at day n belonging to group k.

• I(n,m, l|k, j): Number of infected persons belonging to group k, infection category j, day m
after infection and day l after switching to infection category j.

• Iinf (n,m, l|k, j) = ξ(m, l|k, j)I(n,m, l|k, j): Number of infectious.

• Inew(n|k): Number of new infected.

• D(n,m, l|k, j) = a(m, l|k, j)I(n,m, l|k, j): Number of deceased.

• R(n,m, l|k, j) = p(n,m, l|k, j, Jmax)(I(n,m, l|k, j)−D(n,m, l|k, j)): Number of recovered.

The algorithm for the time evolution with Σ(n,m, l|k, j) = I(n,m, l|k, j)−D(n,m, l|k, j) is

S(n+ 1|k) = S(n|k)− Inew(n|k)
I(n+ 1, 1, 1|k, 1) = Inew(n|k)

I(n+ 1,m+ 1, l + 1|k, j) = p(n,m, l|k, j, j)Σ(n,m, l|k, j)
I(n+ 1,m+ 1, 1|k, j) =

∑
l,j′ 6=j

p(n,m, l|k, j′, j)Σ(n,m, l|k, j′) .
(1)

The switching probabilities p(n,m, l|k, J ′, J) can be time dependent and satisfy the normalization∑
J p(n,m, l|k, J ′, J) = 1. With the cumulative number of dead and recovered persons per group

Dcum(n|k) =
∑

n′,m,l,j

D(n′,m, l|k, j)

Rcum(n|k) =
∑

n′,m,l,j

R(n′,m, l|k, j) .
(2)

we obtain the conservation equation

S(n+ 1|k) + Itot(n+ 1|k) +Rcum(n|k) +Dcum(n|k) = (3)

S(n|k) + Itot(n|k) +Rcum(n− 1|k) +Dcum(n− 1|k) .
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New infections

To estimate the number of new infections we consider the number of contacts c(n|k, k′) that group
k and k′ make at day n. The total number of contacts group k make is c(n|k) =

∑
k′ c(n|k, k′). The

number of infectious persons in group k is

Iinf (n|k) =
∑
m,l,j

ξ(m, l|k, j)I(n,m, l|k, j) , (4)

where ξ(m, l|k, j) is a projection operator that selects infectious out of infected persons. We consider
that only asymptomatic persons are infectious between 5− 11 days after infection (incubation time
is 5 days), and infected persons that show symptoms put themselves in quarantine. The amount of
new infections in group k generated by infectious in group k′ is

Inew(n|k, k′) = βk′
S(n|k)

Pk
c(n|k, k′)

Iinf (n|k′)
Pk′

, (5)

where Pk is the population in group k, and βk the infectiousness of group k. The total number of
new infected in group k is

Inew(n|k) =
∑
k′

βk′
S(n|k)

Pk

Iinf (n|k′)
Pk′

c(n|k, k′) . (6)

The parameter βk describes the infectiousness per group (can be time dependent), and for example
depends on the fraction of people that wear masks in group k. Because there is no solid evidence
that the infectiousness changes with age, we assume for the initial pandemic phase and also for the
lockdown phase (since masks were largely unavailable) that βk = β is the same for all groups. After
deconfinement we use a group dependent βk to implement the possibility that the fraction of people
that wear masks varies between groups.

Reproduction numbers

To connect β to reproduction numbers, we consider the initial condition with S(1|k)
Pk

= 1 and a single
infectious person in group i, Iinf (1|k) = δk,i. The total number of infected generated by this person
per day is ∑

k

Inew(1|k) = β
∑
k

c(1|i, k)

Pi
= β

c(1|i)
Pi

= R̃0,i , (7)

where R̃0,i is the reproduction number per day. Eq. 7 shows that if the number of contacts is

proportional to the group size, c(1|k)
Pk

= const, then R̃0,k is the same for all groups. Moreover, Eq. 7
together with Eq. 5 reveal that the number of new infected is does not change if the normalization
of the contact matrix is altered.

To connect R̃0,k defined per day to the classical reproduction number R̄0, we consider that an
infected person is infectious for in average d̄k days. The mean reproduction number per infections
period is then R̄0,k = R̃0,kd̄k , and the averaged collective reproduction number is

R̄0 =
1

ngp

∑
k

R̄0,k =
1

ngp

∑
k

R̃0,kd̄k , (8)
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where ngp = 5 is the number of groups.
An infected person can start to develop symptoms between days 6− 10 with overall probability

Pk (Qk = 1−Pk is the probability of remaining asymptomatic), in which case he is put in quarantine
the next day. With this information, the mean number of days an infected person remains infectious
is

d̄k = 2 + Pk
1− pk
pk

(9)

where pk = 1 − (1 − Pk)
1
ds and ds = 5. The factor of 2 in Eq. 9 accounts for the fact that a person

that starts to show symptoms is removed from the pool of infectious only the following day. With
20% asymptomatic for group 1-3 and 10% for group 4-5 we get d̄k = [4.1, 4.1, 4.1, 3.5, 3.5].

Contact matrix

The contact matrix before lockdown for our group definitions is obtained from the frequency matrix
in [13] (S3 Table Base-case contact matrix with age categories for all contact and for skin contact
only) by summing over the corresponding age groups. The resulting normalized contact matrix is

gp1 gp2 gp3 gp4 gp5
gp1 0.7564 0.2565 0.0652 0.0385 0.0125
gp2 0.2565 0.4818 0.1367 0.0967 0.0283
gp3 0.0652 0.1367 0.0840 0.0479 0.0120
gp4 0.0385 0.0967 0.0479 0.0689 0.0274
gp5 0.0125 0.0283 0.0120 0.0274 0.0140

 (10)

To estimate the reduced contact matrix after lockdown we used the following reduction matrix:

gp1 gp2 gp3 gp4 gp5
gp1 0.20 0.25 0 0 0
gp2 0.25 0.40 0.40 0.25 0.5
gp3 0 0.40 0.40 0 0.5
gp4 0 0.25 0 0.65 0.3
gp5 0 0.50 0.50 0.30 1

 (11)

To build the reduction matrix, we made several ad hoc assumptions motivated by the following
arguments: the intra-group contacts for group 1 are mostly redundant and therefore strongly reduced
by 80%. The inter-group contact between group 1 and group 2 corresponds to parents children
interactions, which is reduced to 25% of the original contacts. In contrast, we assume that the
contacts made by group 5 are mostly important and therefore cannot be as strongly reduced as for
group 1. We assume no contacts between group 1 and 5 (complete disruption of the relation with
grand-children), however, we kept the contact with the other groups due to social needs. Finally, We
fine tuned these values to fit the hospitalized data.

Code availability

The codes are available upon request to the corresponding authors.
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Parameter Description

n Time in days

m Number of days after infection

l Number of days in an infection category.

k Group index.

1 ≤ j ≤ jmax Infection category. Monitors disease progression.

1 ≤ J ≤ jmax + 1 Infection category with recovered category.

a(m, l|k, j) Probability to die. Infected only die in category 5 and 6.

p(n,m, l|k, Jold, Jnew) Probability to switch from category Jold to Jnew.∑
Jnew

p(n,m, l|k, Jold, Jnew) = 1 (normalization)

p(n,m, l|k, Jmax, Jmax) = 1 (no switching from recovered category)

c(n|k, k′) Contact matrix.

ξ(m, l|k, j) Matrix to identify infectious persons. Only asymptomatic are infections
during 5− 11 days after infection.

Pk Population in group k.

βk Infectiousness of group k.

Table S1: Parameter definitions,

k Group Population (37M)

1 0-24 10.1M (30%)

2 25-49 12.1M (33%)

3 50-59 4.7M (13%)

4 60-69 3.6M (10%)

5 70+ 5.5M (15%)

Table S2: Population groups for the five regions. Source:
https://www.statista.com/statistics/464032/distribution-population-age-group-france/

J, j Category of infected persons

J, j = 1 Asymptomatic

J, j = 2 With symptoms

J, j = 3 Hospitalized with mild symptoms

J, j = 4 Hospitalized with severe symptoms

J, j = 5 Hospitalized with severe symptoms and ICU necessity. Persons in this category
are automatically transferred to category 6 if ICU is available.

J, j = 6 ICU

J, j = 7 Hospitalized after ICU, or after ICU necessity

J = 8 Recovered

Table S3: Infection categories.
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Data for different countries

Data plotted in figure S1 are taken from the repository managed by John Hopkins University https:

//github.com/CSSEGISandData/COVID-19. Four different countries have been considered: France,
Italy, Germany and Czech Republic. Discontinuities in data are related to detection methods of
each country. Curves are fitted using an exponential function, f(t) = α · eβ·t + γ (dashed lines in
the figure). Fits have been performed before lockdown (17th March (France), 9th March (Italy),
22nd March (Germany) and 18th March (Czech Republic)) using Mathematica software, results are
reported in the table.

France Italy Germany Czech Republic

Confirmed 0.18± 0.02 0.19± 0.01 0.25± 0.01 0.26± 0.01

Deaths 0.18± 0.03 0.27± 0.01 0.36± 0.02 xxx

Table S4: Fit exponents β before confinement

France Italy Germany Czech Republic

Confirmed 0.004± 0.001 0.003± 0.001 0.003± 0.001 0.003± 0.001

Deaths 0.005± 0.001 0.002± 0.001 0.09± 0.01 0.09± 0.01

Table S5: Fitted exponents β in the first period after confinement. Fits after lockdown are performed
using ten points (last point 10th April).

Hospitalization data

Data related to the hospitals after the lockdown have been provided by French Government www.

data.gouv.fr are reported in figure 1. In particular our analysis is based on the data in the following
databases: donnees-hospitalieres-covid19 and donnees-hospitalieres-classe-age-covid19. The first one
contains the number of hospitalized people, currently in critical care (ICU), returned home and
deaths divided for departments, the second the same data divided for regions and the relative age
group distribution. In particular we focus our analysis on the most affected french regions: Île de
France, Grand Est, Auvergne Rhône Alpes, Hauts-de-France and Provence-Alpes-Côte d’Azur. The
age group distributions are available since the 18th of March (30 April is missing).
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Supplementary figures
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Figure S1: Exponential rates of confirmed cases (A) and deaths (B) before lockdown for
Czech Republic, France, Germany and Italy. Data are rescaled with values at the beginning
of lockdown. Since the number of deaths for Czech Republic on 18th March was zero, the curve in
panel (B) is scaled to one.
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Figure S2: Prediction of pandemic spread and health care evolution in the absence of
lockdown. Total number of hospitalized people (A), its age group distribution (B) and the daily
variations (C); people in ICU (D), age group distribution in ICU (E) and the daily variations (F);
cumulated deaths (G), age group distribution (H) and daily death (I); cumulative number of people
recovered from hospitalization (J), age group distribution (K) and daily variations (L). Continuous
lines show simulation results, dashed lines the actual data.
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Figure S3: Prediction of pandemic spreading and health care saturation with full decon-
finement and return to social interactions as before lockdown. Total number of hospitalized
people (A), its age group distribution (B) and the daily variations (C); people in ICU (D), age group
distribution in ICU (E) and the daily variations (F); cumulated deaths (G), age group distribution
(H) and daily death (I); cumulative number of people recovered from hospitalization (J), age group
distribution (K) and daily variations (L). Continuous lines show simulation results, dashed lines the
actual data.
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Figure S4: Predictions of health care evolution in a scenario with deconfinement and R0

reduced by a factor of 3 compared to pre-lockdown. Total number of hospitalized people (A),
its age group distribution (B) and the daily variations (C); people in ICU (D), age group distribution
in ICU (E) and the daily variations (F); cumulated deaths (G), age group distribution (H) and daily
death (I); cumulative number of people recovered from hospitalization (J), age group distribution
(K) and daily variations (L). Continuous lines show simulation results, dashed lines the actual data.
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Figure S5: Predictions of health care evolution in a scenario with deconfinement and
R0 reduced by a factor of 2.5 comapred to pre-lockdown. Total number of hospitalized
people (A), its age group distribution (B) and the daily variations (C); people in ICU (D), age group
distribution in ICU (E) and the daily variations (F); cumulated deaths (G), age group distribution
(H) and daily death (I); cumulative number of people recovered from hospitalization (J), age group
distribution (K) and daily variations (L). Continuous lines show simulation results, dashed lines the
actual data.
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