
Coagulation-fragmentation with a finite number of particles:
models, stochastic analysis and applications to telomere

clustering and viral capsid assembly

N. Hoze 1 and D. Holcman 2

Abstract

Coagulation-fragmentation processes with a finite number of par-
ticles is a recent class of mathematical questions that serves modeling
some cell biology dynamics. The analysis of the models offers new
challenging questions in probability and analysis: the model is the
clustering of particles after binding, the formation of local subclusters
of arbitrary sizes and the dissociation into subclusters. We review here
modeling and analytical approaches to compute the size and number of
clusters with a finite size. Applications are clustering of chromosome
ends (telomeres) in yeast nucleus and the formation of viral capsid
assembly from molecular components. The methods to compute the
probability distribution functions of clusters and to estimate the sta-
tistical properties of clustering are based on combinatorics and hybrid
Gillespie-spatial simulations. Finally, we review models of capsid for-
mation, the mean-field approximation and jump processes used to com-
pute first passage times to a finite size cluster. These models become
even more relevant for extracting parameters from live cell imaging
data.

1 Introduction

Clustering processes are generic in statistical physics and biology. For exam-
ple in astrophysics, masses can form aggregate under the gravitation force,
while in biochemistry, molecules interact to form colloids that aggregate in
solution [6]. In cell biology, aggregation underlies beta-amyloid structure
formation involved in Alzheimer disease or chromosomal organization in the
cell nucleus. However a new class of mathematical problems appears with
the need to analyze clustering with a finite number of random particles such
as the organization of the chromosome ends [17] or viral capsid assembly in
cells. These processes are modeled as coagulation-fragmentation.

Irreversible aggregation of many particles in clusters was already de-
scribed by Von Smoluchowski in 1916 [36] to model an infinite number
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of interacting molecules. When a cluster can lose or gain only one par-
ticle at a time, the Smoluchowski equations become the Becker-Döring
model which consists in an ensemble of coagulation-fragmentation equations
[5, 6, 28, 40]. Nowadays, determinist, stochastic, asymptotic and numeri-
cal methods are developed to study steady-state and transient properties
of clustering based on molecular components [2, 10, 39, 33, 7]. Another
class of problem concerns the clustering with an infinite number of parti-
cles (Marcus-Lushnikov process) [30, 31, 25], but much less is known about
coagulation-fragmentation with a finite number of particles [14]. When the
cluster size cannot exceed a given threshold, new difficulties arises in the
analysis of the coagulation-fragmentation equations [17, 41]. These mod-
els are relevant in molecular genetics for characterizing the organization of
the chromosome ends [17] or to model viral capsid assembly in cell biology
[42, 21, 22].

We review here several models, asymptotic and combinatorial results as
well as a generalization of the Gillespie’s algorithm to study aggregation in
spatially inhomogeneous environment. In the first section, we describe the
Smoluchowski equations for coagulation-fragmentation. In the second, we
present a general analysis and result about clustering with a finite number
of particle. Section three is dedicated to Gillespie’s algorithm in spatially
inhomogeneous environment, applied to telomere organization in yeast. In
sections four and five, we present asymptotic methods for capsid viral as-
sembly and the analysis of single particle trajectories.

2 Primer in Smoluchowski equations for coagulation-
fragmentation

2.1 Coagulation-fragmentation with an infinite number of
particles

This section summarizes the Smoluchowski equations for coagulation-fragmentation
that consist of an infinite system of differential equations for the number
n(j, t) of clusters of size j at time t in a population of infinite size [36]. The
coagulation process is characterized by the rate C(i, j) by which two clusters
of size i and j coalesce to form a cluster of size i + j, while fragmentation
with rate F (i, j) describes that a cluster of size i+j dissociates into a cluster
of size i and a cluster of size j. The conservation of mass equation is given
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by

dn(j, t)

dt
=

1

2

j−1∑
k=0

C(k, j − k)n(k, t)n(j − k, t)− n(j, t)
∞∑
k=1

C(j, k)n(k, t)

− n(j, t)

j−1∑
k=1

F (k, j − k) +

∞∑
k=1

F (j, k)n(k + j, t), (1)

where the index j can take values between 1 and ∞ and the first line in the
left-hand side corresponds to the coagulation and the second accounts for
the fragmentation. This system of equations is a mean-field deterministic
model of the coagulation-fragmentation process that do not describe intrinsic
cluster interactions.

Coagulation-fragmentation processes (CFP)satisfies the balance condi-
tion [13], for which there exists a function a(i) = ai such that ∀i, j ∈ N

C(i, j)

F (i, j)
=

a(i+ j)

a(i)a(j)
. (2)

When the total number of clusters is fixed, the probability distribution func-
tion of the number of clusters can be computed, as well as the probability
distribution that the number of cluster of size i is mi so that the distribution
of sizes of clusters is (m1, . . . ,mn). When there are exactly N particles and
the total number of clusters is fixed to K, the following identity for number
conservation is satisfied [27]

N∑
i=1

mi = K. (3)

When the total number of clusters is K, the conditional probability distri-
bution function is given by

p′(m1, . . . ,mN |K) =
1

CN,K

a(1)m1 . . . a(N)mN

m1!...mN !
,

where the normalization constant CN,K will be described below (see formula
53). This formulas are used to compute the statistical moments for the
cluster distributions.

2.2 Continuous-time Markov chain equations for a finite num-
ber of particles

The steady-state distribution for a CFP stochastic model with a finite num-
ber of N particles is described by a continuous-time Markov chain equations
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in the cluster configuration space. We start with N particles distributed in
clusters of size (n1, . . . , nK) that can undergo coagulation or fragmentation
events under the constraint that

K∑
k=1

nk = N. (4)

To study the distribution of particles in clusters, we use the decomposition
of the integer N in a sum of positive integers (integer partition) [3]. The
partitions of the integer N are described in dimension N by the ensemble

PN = {(n1, . . . , nN ) ∈ NN ;

N∑
i=1

ni = N and n1 ≥ · · · ≥ nN ≥ 0}. (5)

The probability P (n1, . . . , nN , t) of the configuration (n1, . . . , nN ) at time t,
satisfies an ensemble of close equations obtained by considering all possible
coagulations or fragmentations between time t and t+∆t :

• Two clusters of size ni and nj coagulates with a probability C(ni, nj)∆t
to form a cluster of size ni + nj .

• A cluster of size ni dissociates into two clusters of size k and ni − k
with a probability F (k, ni − k)∆t.

• Nothing happens with the probability 1−
∑N−1

i=1

∑N
j=i+1C(ni, nj)∆t−∑N

i=1

∑ni−1
k=1 F (k, ni − k)∆t.

Thus, the probability P (n1, . . . , nN , t) satisfies

d

dt
P (n1, . . . , nN , t) = −

N−1∑
i=1

N∑
j=i+1

C(ni, nj) +

N∑
i=1

ni−1∑
k=1

F (k, ni − k)

P (n1, . . . , nN , t)

+
N∑
k=1

∑
n′
i>0,n′

j>0

n′
i
+n′

j
=nk

C(n′
i, n

′
j)P (n1, . . . , n

′
i, . . . , n

′
j , . . . , nN , t)

+

N−1∑
i=1

N∑
j=i+1

F (ni, nj)P (n1, . . . , ni + nj , . . . , nN , t). (6)

Moreover, C(ni, nj) = 0 if either ni or nj is equal to 0. The partitions of
the integer N are described by the set

PN = {(n1, . . . , nN ) ∈ NN ;
N∑
i=1

ni = N and n1 ≥ · · · ≥ nN ≥ 0} (7)
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and the ensemble of decompositions

P ′
N = {(m1, . . . ,mN ) ∈ NN ;

N∑
i=1

imi = N and n1, . . . , nN ≥ 0}. (8)

In the ensemble P ′
N , mi is the number of occurrence of integer i in the

partition of the integer N . The two ensembles PN and P ′
N corresponds to

different representations of the clusters distributions.
For example N = 9 particles are distributed in two clusters of one par-

ticle, two clusters of two, and one cluster of three and the distribution is
(3, 2, 2, 1, 1, 0, 0, 0, 0) ∈ P9, and (2, 2, 1, 0, 0, 0, 0, 0, 0) ∈ P ′

9.
When the coefficient C and F satisfies relation 2, there exists an invari-

ant measure [13] for the steady-state probability of a given configuration
(m1, . . . ,mN ) ∈ P ′

N , given by

P ′(m1, . . . ,mN ) =
1

CN

am1
1 ...amN

N

m1!...mN !
, (9)

where CN is a normalization constant. Computing the normalization con-
stant explicitly is difficult [38]. In the next subsection, we estimate the
probability of occurrence of a certain cluster configuration (m1, . . . ,mN ).

2.3 Description of the cluster partitions with a finite number
of particles

To determine the cluster distribution at equilibrium, we compute here the
probability of a configuration when the number of clusters K is fixed. We
also find the probability of having K clusters. The number of distributions
of N particles into K clusters is the cardinal of the ensemble

PN,K = {(n1, . . . , nK) ∈ (N)N ;
K∑
i=1

ni = N and n1 ≥ · · · ≥ nN ≥ 0},

(10)

which is also the ensemble of the partitions of the integer N as a sum of K
integers. This ensemble is in bijection with

P ′
N,K = {(m1, . . . ,mN ) ∈ NN ;

N∑
i=1

imi = N and

N∑
i=1

mi = K}, (11)
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where the application PN,K → P ′
N,K defined by

(n1, . . . , nK) 7→ (m1, . . . ,mN ) = (

K∑
i=1

1{ni=1}, . . . ,

K∑
i=1

1{ni=N}) (12)

maps the partition (n1, . . . , nN ) where N is written as a sum of K positive
integers to the number of occurrence of each integer into the image partition.
The partitions of N are written as

PN =
∪
K

PN,K and P ′
N =

∪
K

P ′
N,K . (13)

In section 3.1, 3.2 and 3.3, we derive explicitly expressions for the probabil-
ities of configurations in P ′

N,K .

2.4 Statistical moments for the cluster configurations when
the number of clusters is fixed

The probability of a configuration (m1, . . . ,mN ), when the total number of
clusters is equal to K, is

p′(m1, . . . ,mN |K) =

am1
1 ...amN

N

m1!...mN !
CN,K

. (14)

where

CN,K =
∑

(mi)∈P ′
N,K

am1
1 ...amN

N

m1!...mN !
. (15)

The normalization factor of eq. (14) is computed using the partial sums

SN (x) =

N∑
i=1

aix
i. (16)

The functions SK and SK
N have the same N th order coefficient and this

coefficient determines CN,K . We recall [24] the

Theorem 2.1 When the number of clusters is equal to K for a total of N
particles, the mean number of clusters of size i is

⟨Mi⟩N,K = ai
CN−i,K−1

CN,K
, (17)

where ai and CN,K are defined in (2) and (15) respectively.
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Furthermore, ⟨Mi⟩N,K = 0 if i > N −K + 1. Interestingly,

Theorem 2.2 The second moment of the number of clusters of size i is

⟨M2
i ⟩N,K =

1

CN,K

∑
P ′
N,K

m2
i

am1
1 ...amN

N

m1!...mN !
(18)

= a2i
CN−2i,K−2

CN,K
+ ai

CN−i,K−1

CN,K
,

and the covariance is

⟨M2
i,j⟩N,K − ⟨M2

j ⟩N,K⟨Mj⟩N,K = aiaj

(
CN−i−j,K−2

CN,K
−

CN−i,K−1CN−j,K−1

C2
N,K

)
.

(19)

The proofs can be found in [24].

2.5 Distribution of the number of clusters

In the previous section, we introduce the probability distribution of a cluster
configuration and the statistical moments for a fix number of clusters. In
this section, we describe the statistics of the entire cluster configurations
using the probability distribution of the number of clusters. Our goal is to
study the time dependent probability density function

PK(t) = P{K clusters at time t}, (20)

which is associated to a birth-and-death process: the probability of having
K clusters at time t+∆t is the sum of the probability of starting at time t
with K − 1 clusters and one of them dissociates into two smaller ones plus
the probability of starting with K + 1 clusters and two of them associate
plus the probability of starting with K and nothing happens (Fig. 1).
The first probability is the product of PK−1 by the transition rate sK−1∆t
to go from state with K−1 clusters to K, while the second is the transition
fromK+1 toK, which is the product of PK+1 by the transition rate fK+1∆t
of going from K + 1 clusters to K. The master equations are given by

Ṗ1(t) = −s1P1(t) + f2P2(t)

ṖK(t) = −(fK + sK)PK(t) + fK+1PK+1(t) + sK−1PK−1(t)

ṖN (t) = −fNPN (t) + sN−1PN−1(t).

(21)
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N N-3N-2N-1

fN fN-1 fN-2 fN-3

sN-2 sN-3sN-1 sN-4

...

Figure 1: Markov chain representation for the number of clusters.
sK (respectively fK) is the separation (respectively formation) rate of a
cluster when there are K clusters.

The steady probability is defined by

ΠK = lim
t→∞

PK(t) (22)

where there are K clusters at steady state. The steady state probabilities
of the number of clusters are solutions of the system

0 = −s1Π1 + f2Π2

0 = −(fK + sK)ΠK + fK+1ΠK+1 + sK−1ΠK−1

0 = −fNΠN + sN−1ΠN−1,

(23)

with the normalization condition

N∑
K=1

ΠK = 1. (24)

The probabilities ΠK are given by the ratio

ΠK

ΠK−1
=

sK−1

fK
for K ≥ 2 (25)

and the coefficients sK and fK are the mean-field separation and formation
rates respectively. Whereas the cluster configurations when the number of
clusters is fixed depend only on the kernel ai, the statistics of the number of
clusters depends on the cluster fragmentation and coagulation rates F and
C.

In the following, we will focus on the coagulation condition C(i, j) = 1
and the fragmentation F (i, j) =

aiaj
ai+j

to state the

8



Theorem 2.3 When C(i, j) = 1 and F (i, j) =
aiaj
ai+j

, the separation rate

when there are K clusters is given by

sK =

∑N
i=1

∑i−1
j=1 ajai−jCN−i,K−1

CN,K
(26)

and the formation rate when there are K clusters is

fK =
K(K − 1)

2
. (27)

Using these results, we can now describe the statistics of the entire clus-
ter configurations. Using Bayes rule, the probability of a configuration
(m1, . . . ,mN ), that contains K clusters is the product of the conditional
probability p′(m1, . . . ,mN |K) by the probability of having K clusters

p′(m1, . . . ,mN ,K) = p′(m1, . . . ,mN |K)ΠK . (28)

The mean number of clusters of size i is thus

⟨Mi⟩N =

N∑
K=1

ΠK⟨Mi⟩N,K . (29)

2.6 The probability to find two particles in the same cluster

When the mean number of clusters has reached its equilibrium, particles can
still be exchanged between clusters. This exchange is characterized by the
probability to find two particles in the same cluster.
When the distribution of the clusters is (n1, . . . , nK), the probability P2(n1, . . . , nK)
to find two given particles in the same cluster is obtained by using the prob-
ability to choose the first particle in the cluster ni, which is equal to the
number of particles in the cluster divided by the total number of particles
ni
N . The probability to have the second particle in the same cluster is ni−1

N−1 .
Summing over all possibilities, we get

P2(n1, . . . , nK) =

K∑
i=1

ni

N

ni − 1

N − 1
=

1

N(N − 1)
(

K∑
i=1

n2
i −N). (30)

We note that

K∑
j=1

n2
j =

N∑
i=1

i2mi, (31)
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thus we get

∑
(n1,...,nK)∈PN,K

p(n1, . . . , nK)
K∑
j=1

n2
j =

∑
(mi)∈P ′

N,K

p(mi)
N∑
j=1

j2mj

=
N∑
j=1

j2
∑

(mi)∈P ′
N,K

mjp(mi) (32)

=
N∑
j=1

j2⟨Mj⟩N,K ,

where ⟨Mj⟩N,K is the mean number of clusters of size j, when there are N
particles distributed in K clusters eq. (17). Taking into account all possible
distributions of clusters, we obtain that the probability ⟨P2⟩ to find two
particles in the same cluster is

⟨P2⟩ =
N∑

K=1

∑
(n1,...,nK)∈PN,K

P2(n1, . . . , nK)p(ni)ΠK , (33)

which can be written, using expressions (30) and (33) as

⟨P2⟩ =
1

N(N − 1)

N∑
K=1

ΠK

N∑
j=1

j2⟨Mj⟩N,K − 1

N − 1
. (34)

This approach can be generalized to the probability of having n ≥ 2 particles
together.

3 Examples of coagulation-fragmentation with a
finite number of particles

We shall now summarize several results in the three examples:

1. ai = a

2. ai = a for i < M and ai = 0 if i ≥ M

3. We finally consider the case ai = ai.
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3.1 Example 1: the case ai = a

When ai = a, the separation and formation rates sK and fK are computed
with F (i, j) = a and C(i, j) = 1. A cluster of size n dissociates at a rate∑n−1

i=1 F (i, n − i) = (n − 1)a and the sizes of the resulting clusters are uni-
formly distributed between 1 and n − 1. The total transition rate from a
configuration of K to K+1 clusters is the sum over all possible dissociation
rates

sK =

K∑
i=1

(ni − 1)a = (N −K)a. (35)

The formation rate is proportional to the number of pairs

fK =
K(K − 1)

2
. (36)

The steady-state probability ΠK for the number of clusters of sizeK satisfies
the time independent master equation

s1Π1 = f2Π2,

µ1(fK + sK)ΠK = fK+1ΠK+1 + sK−1ΠK−1,

fNΠN = sN−1ΠN−1,

(37)

which leads to the relation

ΠK+1 = (2a)K
(N − 1)!

K!(K + 1)!(N −K − 1)!
Π1. (38)

With he normalization condition
∑

K ΠK = 1, the probability Π1 is ex-
pressed with a hypergeometric series

Π1 =
1

1F1(−N + 1; 2;−2a)
, (39)

where

1F1(a; b; z) =

∞∑
n=0

(a)n
(b)n

zn

n!
, (40)

is Kummer’s confluent hypergeometric function ([1] pp. 503–535) and

(x)n = x(x+ 1)...(x+ n− 1) (41)

11



is the Pochhammer symbol. The average number of clusters at steady state

µ1(a) =

N∑
K=1

KΠK

= Π1
d

dz

(
z1F1(−N + 1; 2; z)

)
|z=−2a

. (42)

The derivative of the Kummer’s function is

d

dz
1F1(a; b; z) =

a

b
1F1(a+ 1; b+ 1; z). (43)

The mean number of clusters is expressed as

µ1(a) = 1 + a(N − 1)
1F1(−N + 2; 3;−2a)

1F1(−N + 1; 2;−2a)
,

= 1 + a(N − 1)G1, (44)

where we note G1 the function defined by

G1 =
1F1(−N + 2; 3;−2a)

1F1(−N + 1; 2;−2a)
. (45)

More generally, we introduce the functions Gi defined by

Gi =
1F1(−N + 1 + i; 2 + i;−2a)

1F1(−N + 1; 2;−2a)
. (46)

All moments of the probability distribution ΠK can be computed and the
nth-order moment µn is expressed using the operator H defined by

H(f)(z) =
d

dz
zf(z), (47)

by

µn =
N∑

n=1

KnΠK =
H(n)(1F1(−N + 1; 2; z))|z=−2a

1F1(−N + 1; 2;−2a)
. (48)

Using the differentiation formula for the hypergeometric function (43), the
moments are

µn =

n∑
k=0

αn
k

Πk+1

Π1
Gk, (49)
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where

αn
k =


k!
∑k/2

j=0(−1)j
(k + 1− j)n + (j + 1)n

(k − j)!
if k is even,

k!
∑(k−1)/2

j=0 (−1)j
(k + 1− j)n − (j + 1)n

(k − j)!
if k is odd,

and αn
0 = αn

n = 1. The variance of the number of clusters is given by

⟨V∞(a⟩⟩ = µ2 − µ2
1 = a(N − 1)G1(a,N) +

2

3
a2(N − 1)(N − 2)G2(a,N)− a2(N − 1)2G2

1(a,N).(50)

3.1.1 Number of clusters of a given size

The statistical moments for the size of clusters are computed from relation
(17) and the mean number of clusters of size n when there are K clusters is

⟨Mn⟩N,K =
∑

(mi)∈P ′
N,K

mnp
′(mi|K) = a

CN−n,K−1

CN,K
. (51)

The normalizing constant CN,K given in eq. (15) is the N−th order coeffi-
cient of SK , where S is the generating function

S(x) =
∞∑
i=1

aix
i = a

x

1− x
. (52)

The coefficient CN,K is thus equal to the N − Kth order coefficient of
1
K!

aK

(1−x)K
. By differentiating N−K times 1

(1−x)K
and estimating the deriva-

tive at x = 0. We obtain that

CN,K =
aK

K!

(N − 1)!

(K − 1)!(N −K)!
. (53)

Thus, by combining (51) and (53),

⟨Mn⟩N,K =
(N − n− 1)!K!(N −K)!

(N − 1)!(K − 2)!(N − n−K + 1)!
, (54)

The mean number of clusters of size n is obtained by summing over all
possibilities configuration with K clusters,

⟨Mn⟩ =
N∑

K=1

⟨Mn⟩N,KΠK =
(N − n− 1)!

(N − 1)!

∑
K

K(K − 1)(N −K)!

(N − n−K + 1)!
ΠK .

13



Using expression (38) for ΠK , we obtain

⟨Mn⟩ = 2a
1F1(−N + 1 + n; 2;−2a)

1F1(−N + 1; 2;−2a)
if n < N, (55)

and

⟨MN ⟩ =
1

1F1(−N + 1; 2;−2a)
. (56)

The mean number of clusters of size N is exactly equal to the probability
Π1(N) of having one cluster when there is N particles (see eq. (39)).

3.1.2 Probability to find two particles in the same cluster

The probability to find two particles in the same cluster for a constant kernel
ai = a, when there are N particles, is

⟨P2⟩ = G1, (57)

where G1 is defined in (45). Indeed the probability that two particles are in
the same cluster is

⟨P2⟩ =
1

N(N − 1)

N∑
K=1

ΠK

N∑
j=1

j2⟨Mj⟩N,K − 1

N − 1

=
1

N(N − 1)

N∑
K=1

ΠK

(
N + 2N

N −K

K + 1

)
− 1

N − 1
, (58)

where the average number of clusters of size j when there is a total of K
clusters is given by relation (54). Thus,

⟨P2⟩ =
2

N − 1

N∑
K=1

ΠK
N −K

K + 1
= − 2

N − 1
+ 2

N + 1

N − 1

N∑
K=1

1

K + 1
ΠK .(59)

which is the definition of G1 eq. (45). For large N , we thus obtain that the
probability that two particles are in the same cluster is

⟨P2⟩ ≈
√

2

aN
. (60)

The results presented in this section were used to study the distribution of
clusters in biological systems such as telomere organization in yeast [17].
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3.2 Example 2: the case ai = a for i < M and ai = 0 if i ≥ M

When N particles can associate or dissociate with a constant rate, but can-
not form clusters of more than M particles, the configuration space for the
distribution of N particles in K clusters of size less than M is now

P ′
N,K,M = {(mi)1≤i≤M ;

M∑
i=1

imi = N ,

M∑
i=1

mi = K}. (61)

First, the minimal number of clusters is necessarily bounded by K ≥ N/M ,
since the opposite would imply a cluster of at least M + 1 particles. The
probability of a configuration (m1, ...,mM ) ∈ P ′

N,K,M is equal to

P ′{(m1, ...,mM ) ∈ P ′
N,K,M} =

1

CN,K,M

1

m1!...mM !
, (62)

where the normalization constant CN,K,M is the Nth order coefficient of

(aX + aX2 + ...+ aXM )K = aK
1

(1−X)K

K∑
n=0

(
K

n

)
(−1)nXnM+K . (63)

Then the Nth order coefficient of the polynomial is obtained by finding the
(N − nM −K)th order coefficient of (1−X)−K

CN,K,M = aK
K∑

n=0

(
K

n

)
(−1)n

1

(N − (nM +K))!
D(N−(nM+K))

(
1

(1−X)K

)
|X=0

,

(64)

where we write D(n) the n−th order derivative. Thus, setting K0 = ⌊N−K
M ⌋,

where ⌊.⌋ is the floor function, we have

CN,K,M = aKK

K0∑
n=0

(N − nM − 1)!

n!(K − n)!(N − (nM +K))!
(−1)n. (65)

For M = N we find K0 = 0 and the normalization constant

CN,K,N = aK
(N − 1)!

(K − 1)!(N −K)!
, (66)

is equal to the normalization constant CN,K obtained for the constant kernel
in section 3.1. The mean number of clusters of size i ≤ M conditioned on
the number of clusters K is

⟨Mi⟩K =
∑

mi∈P ′
N,K,M

mip
′(m1, ...mM ) = a

CN−i,K−1,M

CN,K,M
. (67)
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Two clusters of size i and j can form a new cluster only if i+ j ≤ M . The
formation rate when there are K clusters is thus

fK =
∑

(mi)∈P ′
N,K,M

p′(m1, . . . ,mN )

M/2∑
i=1

mi(mi − 1)

2
+

M∑
i,j=1

i+j≤M ;i ̸=j

mimj

 .

(68)

The formation rate can be written as a function of the coefficients CN,K,M

as

f2 = CN,2,M , (69)

and for K > 2

fK =
K(K − 1)

2

min(M
2
,N−K+2

2
)∑

i=1

CN−2i,K−2,M

+
K(K − 1)

2

min(M−1,N−K+1)∑
i,j=1
i+j≤M

CN−i−j,K−2,M . (70)

The separation rate remains unchanged sK = (N −K)a, and the probabili-
ties at steady state are given by

ΠK =
fK+1

sK
ΠK+1. (71)

We illustrate the limit case a → 0 for N = 9, M = 4 (Fig. 2). When a > 0,
all partitions are accessible, but as a → 0, the steady state configurations
are dominated by the configurations with the largest possible cluster size
(4, 4, 1), (4, 3, 2) and (3, 3, 3). Applying formulas (65) and (67), we obtain
the limit cluster configuration probabilities

p(4, 4, 1) =
3

10

p(4, 3, 2) =
6

10
(72)

p(3, 3, 3) =
1

10
.

These steady state probabilities do not depend on the initial particles config-
urations as long as a ̸= 0. For a = 0, there are three possible configurations
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(4, 4, 1), (4, 3, 2) and (3, 3, 3): once equilibrium is attained, the clusters will
remain unchanged. The probability to get to equilibrium depends on the
configuration and the order of clustering events. When there is no limita-
tion in the cluster formation (M = N = 9), a single cluster containing all
particles is formed (Fig. 2, left panel). For large values of a, most clusters
are very small, and the distributions are similar for M = 4 and M = 9 (Fig.
2, right panel).

Figure 2: (A) Distribution of the number of clusters ΠK for N = 9, when
cluster sizes are limited (M = 4, black) and not limited (M = 9, red).
There is a minimum of ⌈N/M⌉ clusters. From left to right : a = 10−5,
a = 0.5, a = 10. (B) Mean number of clusters of each size ⟨Mn⟩. For
a → 0, for N = 9 and M = 4 the clusters organize in three different cluster
configurations, while for M = N a single cluster containing N particles is
formed.

The probability for two particles to be in the same cluster provides a good
estimation for the cluster distribution for various values of the parameter a
(Fig. 3). When a is large, most particles are contained in very small clusters
and the probability ⟨P2⟩ is similar for the cases M = 4 and M = 9. When
a → 0, particles tend to form larger clusters. A single cluster containing
all particles is formed and ⟨P2⟩ → 1 when M = 9, but the maximal value
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of ⟨P2⟩ is less than 1 when the maximal cluster size is limited. We can
explicitly compute ⟨P2⟩ in the limit case a → 0. For example for M = 4,
using eq. (30), and summing over all possible configurations (72), we obtain

⟨P2⟩ = p(4, 4, 1)P2(4, 4, 1) + p(4, 3, 2)P2(4, 3, 2) + p(3, 3, 3)P2(3, 3, 3)

=
3

10

24

72
+

6

10

20

72
+

1

10

18

72

=
7

24
.

Figure 3: Probability ⟨P2⟩ that two particles are in the same cluster.
The parameters areN = 9 andM = 4 (black), M = 9 (red). For large values
of a ≫ 1, only small clusters are present and the steady state distributions
are similar for the cases M = 4 and M = 9. When a → 0 the clusters
organize in three different cluster configurations, while for M = N a single
cluster containing N particles is formed.

3.3 Example 3: Application to the case ai = ai

We consider the case ai = ai. The number of clusters of size i is asymptoti-
cally [13]

⟨Mi⟩ = aie−i
√

2a/N . (73)
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Similarly to the previous examples, the number of clusters of size i, for a
given distribution of K clusters is

⟨Mi⟩N,K = i

(
N−i+K−2
N−K−i+1

)(
N+K−1
N−K

) . (74)

The number of clusters of a given size is determined by the probability of a
distribution of K clusters ΠK . It is given in the induction relation

ΠK =
fK+1

sK
ΠK+1, (75)

where f and s are the formation and separation rates. The coagulation
kernel is C(i, j) = 1 and the fragmentation kernel F (i, j) = a ij

i+j , and we
obtain that

d(n) =
n−1∑
i=1

a
i(n− i)

n
=

a(n2 − 1)

6
. (76)

The separation rates are

s1 =
a(N2 − 1)

6
(77)

and for K ≥ 2

sK =
a

6

1(
N+K−1
N−K

) 1

(2K − 3)!

N−K+1∑
i=1

i(i2 − 1)(N − i+K − 2)!

(N − i−K + 1)!
. (78)

In addition,

sK =
a

6

(2K − 1)(N +K − 2)

N +K − 1
((N +K − 2)2 + 5)

− a(2N + 2K − 3)(2K − 2) +
a

2
(N +K)2

(2K − 2)(2K − 1)

2K

− a

6
(N +K)(N +K + 1)

(2K − 1)(2K − 2)

2K + 1
. (79)

The formation rates are obtained from the number of cluster pairs that can
coagulate, and are given by

fK =
K(K − 1)

2
. (80)
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To conclude this section, model of discrete coagulation-fragmentation pro-
cesses with a finite number of particles are used to determine the steady
state probability distribution when the number of clusters is fixed. Us-
ing the partitions of the total number of particles with a given number of
clusters, various statistical quantities and moments such as the cluster dis-
tributions can be computed, including also the mean number of clusters of
a given size conditioned on the total number of clusters. Two times can be
used to characterize the cluster dynamics: one is the time that two particles
spend together and second is the time they spend separated. In the next
section, we will describe specific applications in cell biology.
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4 Modeling and simulations of telomere coagulation-
fragmentation process

Telomere aggregate and dissociate according to the coagulation-fragmentation
process presented in section 3.1. To obtain numerically any quantity of inter-
est, we use the master equations that describe the coagulation-fragmentation
process. The equation that describes the probability P (n1, . . . , nN , t) of hav-
ing a distribution of N clusters distributed in clusters of size n1 , . . . , nN ,
given in eq. (6), is t

d

dt
P (n1, . . . , nN , t) = −

N−1∑
i=1

N∑
j=i+1

C(ni, nj) +

N∑
i=1

ni−1∑
k=1

F (k, ni − k)

P (n1, . . . , nN , t)

+

N∑
k=1

∑
n′
i>0,n′

j>0

n′
i
+n′

j
=nk

C(n′
i, n

′
j)P (n1, . . . , n

′
i, . . . , n

′
j , . . . , nN , t)

+
N−1∑
i=1

N∑
j=i+1

F (ni, nj)P (n1, . . . , ni + nj , . . . , nN , t), (81)

where C(i, j) = kf is the formation rate of a cluster of size i + j from two
clusters of sizes i and j, and F (i, j) = kb is the rate of dissociation of a
cluster of size i+ j into two clusters of size i and j.

Because the time distribution of the telomere to a small target is ex-
ponential, the encounter rate of telomeres at the nuclear periphery can be
characterized by a single parameter (the arrival rate or equivalently by an
effective diffusion constant). Even though telomere motion involves com-
plex polymer chains accounting for the physical chromosomal chain, any
encounter is a rare event, and its rate is Poissonian. Consequently, to model
clustering, we use this property to approximate the arrival time of a chro-
mosome to a small cluster by the Poissonian dynamics, as long as the chro-
mosome length does not restrict the motion of the telomere on the nuclear
surface. Two telomeres encounter at a Poissonian rate kf .

Polymer simulations (Fig. 4B) confirms that the arrival time of a telom-
ere to a cluster can be simulated using a Poissonian distribution approach.
In that case, it is enough to study the dynamics of 32 stochastic particles
(Fig. 4C). Thus, using a molecular dynamics simulation of two Brownian
particles on the surface of a sphere [9], Brownian simulations of particle lo-
cated on the two-dimensional sphere except for a region of the size of the
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nucleolus (see earlier discussion) leads to an approximation for the forward
rate of kf ≈ 1.9 10−3s−1, where the encounter disk is of radius δ = 0.015µm
and the effective diffusion constant is D = 0.005µm2/s [8].

When a telomere aggregates to a cluster, it only slightly varies in size.
Indeed, in the complex environment of the nuclear surface, the diffusion
constant varies with the log of the radius of the effective diffusing particle.
Thus any changes in the radius will result only in a small change in the
diffusion coefficient. We neglected any possible changes in the scattering
cross section and motility, which could modify the forward binding rate [17].
Thus the encounter rate between clusters or telomeres will be approximated
by a constant independent of the size.

In the Gillespie algorithm, the transition rate constants between different
cluster configurations are given as follows: for a distribution (n1, . . . , nK) of
clusters, the transition probabilities to the neighboring states depend on two
events: either two clusters (ni, nj) associate to form a new cluster of size n′

i =
ni+nj with an association rate kf or a cluster of size n dissociates into two,
with a rate (n− 1)kb that depends on the number of bonds. The size of the
resulting dissociated clusters is uniformly distributed in the interval [1, n−1].

Since there are K(K−1)
2 pairs, the association rate equals K(K−1)

2 kf , and the
total fragmentation rate is the sum over all dissociation rates

∑
j(nj−1)kb =

(N −K)kb. The total transition rate from the state (n1, . . . , nK) to any of
the possible association and dissociation events is a0(n1, . . . , nK) =

∑
ai =

K(K−1)
2 kf+(N−K)kb. Each iteration step of the algorithm uses the classical

Poissonian random transition time τ = − log r1
a0

, where r1 is a uniform random
variable in [0, 1] and each reaction event i has a probability ai

a0
to occur, and

the chosen reaction i is sorted out using the criteria
∑i−1

j=1
aj
a0

< u ≤
∑i

j=1
aj
a0

where u is uniformly distributed in [0, 1].

4.1 Influence of the chromosome arm length on the cluster-
ing dynamics

Because chromosome arms with a length below 300 kb are mainly located
in a small region near the spindle pole body (SPB) [47], while telomeres
of longer chromosome arms exhibit motion near the nucleolus, we decided
to integrate these constraints into the telomere dynamics (Fig. 4D). We
distribute telomeres into two classes based on the length of the chromosome
arm [47] and restricted 12 telomeres to a small region account for short-short
interactions (SS) around the SPB (1/3 of the surface) and the other 20 are
free to diffuse in a larger region where only long telomeres can interact (LL),
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which excludes both the nucleolus and a small cap around the SPB (SL is
2/3 of the nucleus surface).

In the common region SL, both types of telomeres can meet to form
mixed clusters. There are three possible classes of telomere clusters: clusters
containing telomeres from long chromosome arms only (long), from short
chromosome arms only (short) or from long and short chromosome arms
(mixed), leading to six forward rates, accounting for the long-long, short-
short, long-short, long-mixed, short-mixed and mixed-mixed interactions.

In addition, for two telomeres from the pool of long chromosome arms,
the recurrence time and we report that TR = 442 s (n = 1, 000), shorter than
the forward time k−1

f (L,L) ≈ 500s. Thus, the interaction of telomeres from
short chromosome arms with a cluster made of long ones will contribute to
the confinement of the cluster to a smaller region of the nuclear periphery,
which will consequently decrease the mean time for two telomeres to meet
again. The mean time to separation TS was similar for telomeres from short-
short, short-long and long-long chromosome arms (≈ 21 s, versus 31 s for the
dissociation time between two telomeres, n = 1, 000), reflecting that clusters
contain the same number of telomeres independently of their composition.

Finally, the equilibrium probability to find a given telomere in a visible
cluster (containing more than 2) was Pr(S, S) = 0.06, Pr(L,L) = 0.045
and Pr(L, S) = 0.04 (for short-short, long-long and long-short arm inter-
actions), confirming that the encounter rate for small telomeres is higher
than for long ones, due to the smaller space they can explore. Our results
are mainly consistent with [47], where the probabilities for two telomeres
to belong to the same focus are determined experimentally to be mostly in
the range 0.04-0.09. The differences between these experimental data and
our simulations might be due to specific interactions between telomere pairs,
which we did not take into account. Indeed, contacts between telomeres on
opposite chromatid arms of equal length is favored [48].

The aggregation-dissociation model for telomere organization was used
to extract invivo parameters by comparing stochastic simulations with live
cell imaging data (Fig. 5A). The dissociation rate kb is estimated by com-
paring the experimental and simulation histograms for the number of clus-
ters containing more than two telomeres (Fig. 5B). Histograms similarity
was evaluated using the Kolmogorov-Smirnov (KS) score, here defined as
the maximum of the absolute difference of the experimental and simulated
cumulative distribution function for the number of clusters. The optimal
value of the KS score was 0.11 obtained for kb = 2.410−2s−1.

However, a higher variance in the histogram of the experimental number
of clusters. To account for this variation, we introduced fluctuations in
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LL Region

SL Region

SS region
Spindle Pole Body

Figure 4: Computational model of telomere cluster formation. (A) Snapshot
from a Brownian dynamics simulation of a polymer with one end anchored
on the nuclear surface. The polymer is composed of 100 monomers with
average distance between monomers of l0 = 50 nm, and the nucleus is a
reflecting sphere of size R = 250 nm. (B) Histogram of the arrival times for
a polymer of 100 monomers freely diffusing in the nucleus and one end con-
strained to diffusion on the surface. A fit of the form f(t) = a exp(−bt) gives
a = 1.014 and b = 0.76. (C) The diffusion-aggregation-dissociation model of
telomere organization. Telomeres are simplified as Brownian particles dif-
fusing on the nuclear surface that can meet and form clusters, and clusters
of n telomeres split at a rate (n− 1)kb. The coarse-grained association rate
kf is taken as the average of the cluster meeting times. (D) Influence of long
and short chromosome arms on clustering. Decomposition of the nucleus in
subdomains with telomeres from short and long chromosome arms. Both
types of telomere can interact in a common region.
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the value of the dissociation rate kb of each cell. We generated random
values of kb following a Gaussian distribution and we found that for kb =
2.310−2 ± 1.310−2s−1, which corresponds to a = kb/kf = 12± 7, we obtain
an optimal fit for the distribution of the number of clusters. Simulations
show an excellent adequacy to the experimental cluster distribution (Fig.
5B), size (Fig. 5C) and size distribution (Fig. 5D), with a KS score of 0.07.

We observed an average of three detectable clusters per cell, and very
few cells with more than eight clusters. Interestingly, in the simulations, 9.9
(8.2) telomeres are isolated (in pairs). In addition, the number of telomeres
per cluster obtained in our simulations reflects very well the cluster intensity
obtained experimentally: in both simulated and experimental data, we found
that the average cluster intensity does not vary with the number of clusters
per cell (Fig. 5C). Because there are 32 telomeres and that the intensity is
an increasing function of the number of telomeres, we conclude that there
are in average no more than four telomeres per cluster. A better precision
about the cluster distribution is obtained by plotting the distribution of the
first three brightest clusters for both experimental and simulated data (Fig.
5D): in both cases the three brightest clusters contain four telomeres.

The robustness of the aggregation-dissociation model is tested for the or-
ganization of telomeres in diploid cells where the nuclear volume (nucleus ra-
dius = 1.25 µm) and the number of telomeres are doubled. These changes in
the cell geometry affect the forward rate, which we recomputed from Brown-
ian simulations, and we now found for the association rate kf = 1.110−3s−1.
Considering that the backward rate is unchanged and taking the value found
in the normal case, we obtained for the new equilibrium constant the value
a = 21± 12 (compared to 12± 7 for the haploid).

Telomere foci in diploid cells are shown in Fig. 5E, and the number
of telomere foci obtained by simulation is similar to the number measured
in live cells. They have in average 6 clusters containing 3 to 6 telomeres
per cell (Fig. 5F,G). The light intensity and the telomeres distribution of
measured and simulated telomeres per cluster were very similar (Fig. 5F-
H). Interestingly the median cluster size is 4 in both haploid and diploid
cells, i.e. there are four telomeres per cluster, suggesting that the number
of telomeres per cell does not influence the number of telomeres per cluster.
Furthermore, according to the simulations, in diploid cells, telomeres cluster
in 5-9 foci containing 3 to 6 telomeres, while 18.7 telomeres are single and
16.4 are in pairs. The matching between experimental data and numerical
simulations confirms the robustness of the model to parameter changes,
while the physical properties of the telomeres and the cluster dissociation
rate were maintained fixed.
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Figure 5: Comparison of experimental and simulation results of telomeres
clustering in yeast. (A,E) Live-cell imaging of telomere clusters. Repre-
sentative fluorescence image of the telomere-associated protein Rap1 tagged
with GFP (scale bar, 2 µm) in haploid (A) and diploid cells (B). (B, F)
Histogram of the number of clusters per cell. (C, G) Mean ± s.d. of the
intensity distributions of the clusters in live cells and distribution of the
cluster size in the Brownian simulations. In the haploid cells, clusters are
made of four telomeres, with a small dispersion that does not depend on
the cluster number. (D, H) Fluorescence intensity (experiments) and sizes
defined as the number of telomeres per cluster (simulations) for the three
brightest clusters. The frequency of occurrence (y-axis) of a given cluster
size is plotted as a function of the intensity of a cluster (x-axis), proportional
to the telomere number.
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5 Modeling capsid formation as an aggregation
process

In this second part, we study here the kinetics of cluster formation start-
ing with the arrival and fusion of elementary particles at a nucleation site.
Particles involved in the cluster formation are organized in aggregates. The
aggregates increase the cluster size by fusion to the particles. This is an
elementary model of capsid viral assembly, where the density distribution
of aggregates is at steady state. To maintain this distribution, the protein
production must be much larger than the aggregates needed to form a single
capsid.

In that model, a cluster can accept a maximum of N0 particles, and
is complete when exactly N0 particles have arrived. The cluster is formed
upon the arrival of aggregates of various size. When a cluster has reached
a size n, it can accept aggregates of size less than N0 − n (Fig. 6C). Each
aggregate binds to a cluster with a Poissonian arrival rates λ, independent
of the aggregate size. Aggregates participating in the cluster formation
are already formed and are at steady state. Therefore the number nk of
aggregates containing k particles is constant. The total number of particles
NT is distributed among the aggregates., therefore

NT =

N0∑
k=1

knk. (82)

We assume that the number of aggregates of size k is distributed exponen-
tially and given by

nk+1 = pnk, k ≥ 0 (83)

where the parameter 0 ≤ p ≤ 1.We present here the models of nucleation
using a mean-field approximation and a stochastic jump process.

5.1 Mean-field approximation

We now derive an equation for the cluster size n(t) at time t. The cluster
growth rate depends on the arrival of an aggregate of size k and on the
probability q of finding a free site at the cluster. We neglected here the
geometrical organization of an aggregate and consider that upon fusion, it
fills empty slots in the cluster. We do account here for the geometrical
organization in facet of aggregates which participate to the structure of
viral capsids. Thus, the probability q does not depends on the geometry or
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Figure 6: Schematics of clustering for a finite number of particles. (A) Model
used for telomere clusters coagulation-fragmentation. (B,C) Model used for
capsid formation.

positions of the aggregates already present in the cluster but only on their
number. We chose the linear relation

q(n(t)) = 1− n(t)

N0
. (84)

In addition, we neglected any changes of the arrival rate due to the size of the
aggregate that can affect the diffusion coefficient. To conclude, a nucleation
site is formed when it is entirely filled by aggregates. The cluster growth is
due to the arrival of aggregate of size k and the rate is λknk. The cluster
total growth rate is is the product of the probability to find an available site
times the sum of the arrival rate of any aggregate. The average size n(t)
satisfies the equation

ṅ(t) = λ

(
1− n(t)

N0

)N0−n(t)∑
k=1

knk

 , (85)

which reduces to

ṅ(t) = A(N0 − n(t))
[
1− pN0−n(t)(1 + (N0 − n(t))(1− p))

]
, (86)

with initial condition n(0) = 0 and

A =
λNT

N0 [1− pN0(1 +N0(1− p))]
. (87)
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For 0 < p < 1, although eq. (86) cannot be integrated analytically, we
obtain the short and long time asymptotic in the limit of N0 large. For
short time, the size for the growing cluster is

n(t) ≈ λNT t, for t ≪ 1, (88)

which is independent of p. For large t and small p, the first order expansion
is

n(t) ≈ N0 −
N0

λNT (p− 1− log p)

1

t
for t ≫ 1. (89)

In the limit case p = 1, equation (86) changes its nature and for large N0,
it reduces to

n(t) = N0 −
N0√

1 + 2λNT
N0

t
for t ≫ 1. (90)

When there are single monomers only (p = 0) eq. (85) describes the classical
kinetics of arrival and the solution to eq. (86), which reduces to a single

exponential n(t) = N0(1− e
−λ

NT
N0

t
). We plotted in figure 7A the kinetics of

the cluster formation. Interestingly, the cluster is formed more quickly for
lower values of the parameter p.

5.2 A stochastic dynamics for the cluster formation

Due to the discrete arrival of aggregates to the nucleation site, the cluster
size increases by random jumps that we shall describe now using a stochastic
jump process. When an aggregate arrives in the time interval (t, t + ∆t),
the cluster of size n(t) at time t increases with a probability µ(n(t))dt that
depends on its size at time t, thus

n(t+∆t) =


n(t) w.p. 1− µ(n(t))∆t

n(t) + J(n(t)) w.p. µ(n(t))∆t,

where J(n(t)) is the size of a random jump, characterized by its conditional
transition distribution

Pr{J(n(t)) = m− n|n(t) = n} = w(m− n|n)

=
(1− p)pm−n

p(1− pN0−n)
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and w(m− n|n) is transition probability from n to m, which we normalized
by summing over all aggregate sizes that can fuse with the cluster. To
determine the arrival rate of an aggregate, we start with a cluster containing
n particles. The arrival rate of an aggregate is given by the jump rate µ(n),
which is equal to the arrival rate λ of an aggregate of particles (or a single
particle), multiplied by the number of aggregates smaller than N0 − n, so
they can enter in the nucleation site, multiplied by the probability of finding
a free site (proportional to 1− n

N0
). The jump rate is thus

µ(n) = λ(1− n

N0
)

N0−n∑
k=1

nk

= a(N0 − n)(1− pN0−n), (91)

where a = λNT
N0

1−p
1−pN0 (1+N0(1−p))

. The probability density function satisfies

the master equation

p(m, t+∆t) = (1− µ(m)∆t)p(m, t)

+

m−1∑
n=1

w(m− n|n)p(n, t)µ(n)∆t,

which tends in the limit ∆t → 0, to the discrete forward Fokker-Planck
equation

∂p(m, t)

∂t
= Lmp(m, t) = −µ(m)p(m, t)

+
m−1∑
n=1

µ(n)w(m− n|n)p(n, t), (92)

where Lm is the forward Kolmogorov operator.

5.3 The mean time to cluster formation.

The time to form the cluster is the mean first passage time ⟨τ(n)⟩ of the
cluster size to its maximum N0. By definition,

τ(n) = inf {t > 0;n(t) ≥ N0|n(0) = n} (93)

and the MFPT is solution of the backward equation [43] with absorbing
boundary condition at N0

L∗
n⟨τ(n)⟩ = −1

⟨τ(N0)⟩ = 0,
(94)
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where the operator L∗
n is the adjoint of Lm. The MFPT is obtained by

solving the system of equations for 0 ≤ n ≤ N0 − 1,

−1 = −µ(n)⟨τ(n)⟩+
N0∑

m=n+1

⟨τ(m)⟩µ(n)w(m− n|n). (95)

The mean time of a cluster formation is then

⟨τ(0)⟩ =
N0(1− pN0(1 +N0(1− p)))

λNT
×[

1

N0(1− p)(1− pN0)
+

N0−1∑
i=1

1

i(1− pi+1)(1− pi)

]
,

(96)

which depends on the total number of particles NT , the maximal size N0,
the parameter p that describes the size distribution of aggregates and λ the
arrival rate of an aggregate to the nucleation site.

For small p and large N0, we obtain the approximation

⟨τ(0)⟩ = N0

λNT
(logN0 + γ) + o(p). (97)

For a large nucleation site N0, in the limit p → 1, the mean time remains
finite and equation (96) becomes

⟨τ(0)⟩(N0, p, λ,NT ) =
N2

0

λNT
(
π2

6
− 1) for p = 1. (98)

The mean formation time does increases drastically as p tends to 1 (Fig. 7C).
Indeed, a cluster starts growing very rapidly when large aggregates arrive,
however the growth is reduced later on because the number of admissible
aggregates (smaller than the number of available sites) is small. Admissible
aggregates represent only a small fraction of the total number of aggregates.

5.4 Composition of a cluster

We now characterize the cluster assembly by studying the size distribution
of aggregates that have arrived to the nucleation site. We shall derive also
the size of the largest aggregate that contributes to the cluster formation. To
evaluate the various sizes of aggregates that bind to the cluster, we consider
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the ensemble of aggregates. During the sequential steps of aggregation, the
number of particles Cn at the nth-step, with C0 = 0, follows the equation

Ci+1 = Ci + zi+1, (99)

when zi+1 is the size of the aggregate that binds at step i+ 1. The cluster
contains a maximum of N0 particles. The size of aggregate zi+1 that binds
to the cluster can take values in (1, . . . , N0 − Ci) and thus the probability
that the i+ 1th aggregate is of size k when there are N0 − Ci free sites is

PN0−Ci(zi+1 = k) =
(1− p)pk−1

1− pN0−Ci
. (100)

Thus, the joint probability that the cluster assembles with the following
order of arrival (k1, . . . , kn) is the product of the conditional probabilities
(100)

P (z1 = k1, . . . , zn = kn) =

n∏
i=1

PN0−
∑i−1

j=1 kj
(zi = ki),

with the condition
∑n

i=1 ki = N0.

5.5 The largest aggregate merging to the cluster

The probability that the largest aggregate zmax is less than K during the
cluster assembly is

PN0,K =
∑

{(k1,..kn);
∑

ki=N0}
and k1,...,kn≤K

P (z1 = k1, . . . , zn = kn). (101)

To obtain an approximation of PN0,K for large N0, we sum over the first
jump size, which leads to the induction formula

PN0,K =

K∑
k1=1

PN0(z1 = k1)PN0−k1,K , (102)

where Pn,k = 1 for n ≤ k. When the parameter p = 1, formula (102) reduces
to

PN0,K =

K∑
k1=1

1

N0
PN0−k1,K . (103)
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The induction formula (103) can be solved by PN,K = f(KN ), where f satisfies

f ′(x) =
f( x

1−x)

x
with x = K

N . The function f is solution of a n-th order linear

differential equation on each interval [ 1
n+1 ,

1
n ] for n ≥ 1, which we solved on

the intervals (13 ,
1
2) and (12 , 1). However there is no simple formula on other

intervals. Finally, the probability for the size of the largest aggregate to be
less than K after the cluster is filled is given for large N0 by

PN0,K = 1 + log
K

N0
for N0/2 ≤ K ≤ N0 (104)

and

PN0,K = 1 + log
K

N0
+ Li2(

K

N0
) +

1

2
log2

K

N0

+ log(
K

N0
) + 1 for N0/3 ≤ K ≤ N0/2 (105)

where Li2(x) =
∑∞

k=1
xk

k2
. The probability PN0,K is well approximated by the

function f that we constructed inductively on intervals (13 ,
1
2) and (12 , 1) (Fig.

7D). The construction of the function f reflects that the number of possible
jumps of maximal size is limited: indeed, once an aggregate of size larger
than N0/2 has arrived, the size of all other aggregates can only be smaller
than N0/2, leading to the initial interval (12 , 1). Similarly, after an aggregate
of size between N0/3 and N0/2 has arrived, other possible aggregates have
a size smaller than N0/3. This constraint leads to the second interval (13 ,

1
2).

We obtain by induction the division in intervals ( 1
n+1 ,

1
n).

5.6 Aggregation of capsid in potential wells

Recent super-resolution data have revealed that GAG proteins of the HIV
virus can aggregate in specific microdomains [15]. Interestingly, the proteins
aggregate in small regions characterized by a physical potential well (fig. 8),
discovered in [17]. Indeed the motion of aggregates on the membrane surface
is influenced by a diffusion coefficientD and a field of force F (X, t), following
the overdamped Langevin model equation

Ẋ =
F (X(t), t)

γ
+

√
2DẆ, (106)

where W is a Gaussian white noise and γ is the dynamical viscosity [34].
The source of the noise is the thermal agitation of the ambient lipid and
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Figure 7: (A) Kinetics of the cluster growth in the mean field approximation.
Various kinetics profile (solution of eq. (86)) for NT = 1, 000, N0 = 1, 000,
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membrane molecules. However, at low resolution, the motion is described
by an effective stochastic equation [18, 20]

Ẋ = a(X)dt+
√
2B(X)Ẇ , (107)

where a(X) is the drift field and B(X) the diffusion matrix. The effective
diffusion tensor is given by D(X) = 1

2B(X)BT (X) (.T denotes the trans-
position) [35, 34]. The observed effective diffusion tensor is not necessarily
isotropic and can be state-dependent, whereas the friction coefficient γ in
106 remains constant and the microscopic diffusion coefficient (or tensor)
may remain isotropic.

The drift field a(x) in equation 107 represents a force that acts on the
diffusing particle, regardless of the existence or not of a potential well [23].
In the case where D(x) is locally constant and the coarse-grained drift field
b(x) is a gradient of a potential

a(x) = −∇U(x), (108)

then the density of particles represents locally the Boltzmann density e−U(x)/D

[23]. The force field can form potential wells, generically approximated
locally as a paraboloid with an elliptic base. It remains a difficult ques-
tion to extract the axis, the center and the boundary of the elliptic base
of the well. Once they are known, within the analytical representation

U(x) = A
(
( x
rx
)2 + ( y

ry
)2
)
+ O(x, y)2, the constants A, rx, ry are three pa-

rameters to be determined.
GAG proteins show free and confined motions. The density of particles

is quite heterogeneous, with many small dense regions and a few very dense
regions (Fig. 8). The stochastic analysis and diffusion map (Fig. 8) reveals
a mean diffusion coefficient is D = 0.7µm2/s almost uniform. Several po-
tential wells could be detected with an elliptical base with radius 170 nm -
200 nm. One with depth A = 0.78µm2/s with a score of 0.20, confirming
that these wells are robust [18]. The energy of the potential well is in the
range 1.7-4 kT.

Interestingly, the wells evolve in time (Fig. 9) and can disappear rapidly
(in less than 5 minutes) and the energy decreases gradually in time. This
analysis used a moving window, which smooths out fluctuations. To observe
the evolution of the trajectories in a small region in the proximity of the
potential well, we plotted windows of 180 s of recording (Fig. 9). For each
panel, the trajectories were recorded in the time interval (t, t+ 180s). The
next panel represents trajectories taken 10 seconds afterwards, in the time
interval (t+10s, t+190s). To represent the evolution of trajectories through
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time, in each window, the trajectories are colored during the first seconds
in blue, and trajectories near 180 s in red. The most recent trajectories are
overlaid on the first trajectories.

In the first seconds, trajectories are appeared unorganized (fig. 9, top
row). Confined trajectories appear in only 10 seconds at 1750 s(Panel 1570–
1750 s). This confinement lasts for 140 s: after time 1890 s (Panel 1710–1890
s), the new trajectories (red) that pass over the former confinement region
are diffusive and not attracted to any point. To conclude, the potential well
lasted for 140 s between 1750 s and 180 s. Moreover the confinement region
is expanding through time. The radius of the potential well changed from
approximately 200 nm at the beginning at 1750 s (Panel 1570–1750 s) to a
radius of 250 nm at 1890 s. To measure the changes in energy of the well
through time, the energy of the well in each window of 180 s is shown in fig.
9 lower panel. During the time interval (1750–1890 s), which corresponds to
the period of confinement, the proximity of the measured drift map with a
parabolic expression is in very good agreement in the confinement in the time
period (1750–1890 s). This agreement confirms the presence of interaction
forces acting on the Gag proteins. Finally, the present analysis confirms
that aggregate formation occurs in geometrical confined structures that are
transient in time.

5.7 Conclusion

We presented here several analytical formula based on aggregation-fragmentation
with a finite of particles. These formulas can be used to extract parame-
ters such as rate constants from experimental data. The general framework
is also used to derive the extreme statistics about the time formation of a
cluster or the time two particles spend in the same cluster.

We also discussed here two important applications about telomere clus-
tering in yeast [17, 19] and capsid formation [22]. The geometrical organiza-
tion of a cluster formation from small aggregates remains difficult to account
for into modeling. Future directions should be concerned with accounting for
the random geometry of aggregates and their insertion in a cluster. In the
last subsection, we reviewed experimental evidences that capsid assembly
might use the membrane local curvature, but the exact mechanism remain
opens.
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Figure 9: (Upper) Time dependent aggregation, separated in time windows.
Lower A-B. transient potential wells corresponding to panel A. For the last
panel, some GAG trajectories are not attracted by potential wells (data
given by the courtesy of S. Manley).
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