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 PARTIALLY REFLECTED DIFFUSION*

 A. SINGER*, Z. SCHUSS*, A. OSIPOV§, AND D. HOLCMAN*

 Abstract. The radiation (reactive or Robin) boundary condition for the diffusion equation is
 widely used in chemical and biological applications to express reactive boundaries. The underlying
 trajectories of the diffusing particles are believed to be partially absorbed and partially reflected at
 the reactive boundary; however, the relation between the reaction constant in the Robin boundary
 condition and the reflection probability is not well defined. In this paper we define the partially
 reflected process as a limit of the Markovian jump process generated by the Euler scheme for the
 underlying ltd dynamics with partial boundary reflection. Trajectories that cross the boundary are
 terminated with probability Py/At and otherwise are reflected in a normal or oblique direction.
 We use boundary layer analysis of the corresponding master equation to resolve the nonuniform
 convergence of the probability density function of the numerical scheme to the solution of the Fokker-
 Planck equation in a half-space, with the Robin constant «. The boundary layer equation is of the
 Wiener-Hopf type. We show that the Robin boundary condition is recovered if and only if trajectories
 are reflected in the conormal direction an, where a is the (possibly anisotropic) constant diffusion
 matrix and n is the unit normal to the boundary. Otherwise, the density satisfies an oblique derivative
 boundary condition. The constant k is related to P by k = rPy/a^, where r = 1/ \pH and <jn = nT an.
 The reflection law and the relation are new for diffusion in higher dimensions.

 Key words, stochastic differential equations, reactive boundary condition, Markovian jump
 process, Wiener-Hopf boundary layer equation

 AMS subject classifications. 60H35, 60J50, 81S40

 DOI. 10.1137/060663258

 1. Introduction. The Fokker-Planck equation (FPE) with radiation (also
 called reactive or Robin) boundary conditions is widely used to describe diffusion
 in a biological cell with chemical reactions on its surface [1], [2], [3], [4], [5], [6], [7],
 [8], [9]. The Robin boundary conditions are used in [2], [4], [5], [6] as a homoge-
 nization of mixed Dirichlet-Neumann boundary conditions given on scattered small
 absorbing windows in an otherwise reflecting boundary. The mixed boundary condi-
 tions may represent, e.g., ligand binding or pumping out ions at sites on the boundary
 of a biological cell and no flux through the remaining boundary. The reactive rate
 constant in the Robin boundary conditions is chosen in the homogenization process
 so that the decay rate of the survival probability is the same as that in the mixed
 Dirichlet-Neumann boundary value problem.

 The definition of the ltd stochastic dynamics

 (1.1) X
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 PARTIALLY REFLECTED DIFFUSION 845

 on the positive axis with total or partial reflection at the origin was given first by
 Feller [10] for the one-dimensional case with a(x, t) and <t(x, t) independent of t, as a
 limit of Ito processes, which are terminated when they reach the boundary or moved
 instantaneously to a point x - pj , > 0 with probability pj. When pj -> 1 and pj - > 0
 with

 (1.2) lim
 j-+oo pj

 where c is a constant, the partially reflected process converges to a limit. The
 transition probability density function (pdf) of the limit process, p(y, t \ x, s) dy =
 Pr{x(£) € (y, y + dy) I x(s) = x}, is the solution of the FPE

 n Qx dp(y,t\x,s) _ d[a(y,t)p(y,t\x,s)] d2[a(y,t)p(y,t \x,s)]

 or, equivalently,

 dp(y,t\x,s)
 dt

 J(y,t\x,s) = a(y,i

 dJ{y,t\x,s)
 dy

 a(y,i {y,t)p{y,t\x,s)

 is the flux. The initial condition is

 (1.5) p(y,t\x,s)^>6(y-x) as 1 j s,

 and the radiation boundary condition is

 (1.6) - J(0, 1 1 x, 5) = «p(0, t\ x, s),

 where k is a constant related to the constant c and to the values of the coefficients at

 the boundary. The no flux and Dirichlet boundary conditions are recovered if c = 0
 or c = 00, respectively. Feller's method does not translate into a Brownian dynamics
 simulation of the limit process, because his approximations are continuous-time Ito
 processes. Skorokhod [11] defines the reflection process inside the boundary. Several
 numerical schemes have been proposed for simulating this process (see, e.g., [11],
 [12], [13], [14]). The main issue there is to approximate the local time spent on the
 boundary.

 The definition of a diffusion process with absorbing or reflecting boundaries as
 limits of Markovian jump processes, which is the basis for all simulations, gives in the
 limit diffusion processes with well-defined boundary behavior. However, the definition
 of a diffusion process with partially reflecting boundaries as a limit of Markovian jump
 processes gives different diffusions for different jump processes. This is expressed in
 different relations between the termination probability of the jump process and the
 boundary conditions for the FPEs (see, e.g., [8]). The process x(t) defined by (1.1)
 with partially absorbing boundaries can be defined as the limit of the solutions of the
 Markovian iump processes generated by the Euler scheme

 (1.7) xAt(t + At) = xAt(t) + a(xAt (*), t)At + a/M^a* W, 0 Aw(£, At) for t > 5,
 (1.8) xAt(s)=x
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 846 A. SINGER, Z. SCHUSS, A. OSIPOV, AND D. HOLCMAN

 in the interval x > 0, for 0 < t - s < T, with At = T/N, t- s = iT/N (i =
 0, 1, . . . , iV), where for each t the random variables Aw(t, At) are normally distributed
 and independent with zero mean and variance At. The partially absorbing boundary
 condition for (1.7) has to be chosen so that the pdf PAt(#? t) of x^tit) converges to the
 solution of (1.3)-(1.6). At a partially reflecting boundary for (1.7), the trajectories
 are reflected with probability (w.p.) R and otherwise terminated (absorbed), once
 they cross the origin. We show below that keeping R constant (e.g., R = 1/2) as
 At - > 0 leads to the convergence of the pdf PAt(x,t) to the solution of the FPE
 with an absorbing rather than the Robin boundary condition. Thus the reflection
 probability R must increase to 1 as At - > 0 in order to yield the Robin condition
 (1.6). Moreover, the reactive constant k is related to the limit

 (1-9) Jim 17=2 = P.

 The reflecting boundary condition is recovered for P = 0, while the absorbing bound-
 ary condition is obtained for P = oo. Motivated by these considerations, we design
 the following simple boundary behavior for the simulated trajectories that cross the
 boundary, identified by x±t{t) + a(xAt(t),t)At + y/2a(xAt(t),t) Aw < 0:
 (1.10)

 u _l a*\ - / -(W*) + a(xAt(t),t)At + y/2a(xAt(t),t)Aw) w.p. 1 - Py/At,
 X&t[t-r _l £±t) - - \

 and is otherwise terminated (absorbed). The scaling of the termination probability
 with yfAb reflects the fact that the discrete unidirectional diffusion current at any
 point, including the boundary, is O{\/y/At) (see [15], [16]). This means that the
 number of discrete trajectories hitting or crossing the boundary in any finite time
 interval increases as 1/y/At. Therefore, to keep the efflux of trajectories finite as
 At - ► 0, the termination probability of a crossing trajectory, 1 - i?, has to be O(y/At).
 The pdf PAt(#>£)> however, does not converge to the solution p(x,t) of (1.3)-(1.6) on
 the boundary, as discussed in section 2. This is due to the formation of a boundary
 layer, as is typical for diffusion approximations of Markovian jump processes that
 jump over the boundary [17], [18], [19]. The boundary layer equations are typically
 Wiener-Hopf integral equations. The Wiener-Hopf boundary layer equation for the
 particular case of a partially reflected Brownian motion on the positive axis (i.e.,
 a(x,t) = 0 and a(x,t) = a in (1.7)) was recently solved in [8], and the relationship
 k = Py/a/y/n was found.
 The convergence of the pdf of an Euler scheme has been studied in [20], [21] for

 the higher-dimensional problem with oblique reflection. Bounds on the integral norm
 of the approximation error are given for the solution of the backward Kolmogorov
 equation. These, however, do not resolve the boundary layer of the pdf of the numer-
 ical solution. The solution of the forward equation for the Euler scheme converges
 nonuniformly to the solution of the FPE due to the appearance of a boundary layer in
 the first order spatial derivative. This distorts the boundary flux and gives incorrect
 boundary conditions. A boundary layer expansion is needed to capture the boundary
 phenomena.
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 PARTIALLY REFLECTED DIFFUSION 847

 The derivation of the radiation condition has a long history. Collins and Kim-
 ball [22] (see also [23]) derived the radiation boundary condition (1.6) for the limit
 p(x, t) = liniAt->oPAt(#j t) from an underlying discrete random walk model on a semi-
 infinite one-dimensional lattice with partial absorption at the endpoint. Their model
 assumes constant diffusion coefficient and vanishing drift, for which they find the re-
 active constant in terms of the absorption probability and the diffusion coefficient.
 Previous simulation schemes that recover the Robin boundary condition [1], [24], [25],
 [26], [27] make use of the explicit solution to the half-space FPE with linear drift term
 and constant diffusion coefficient with a Robin condition. In [28] and the references
 therein, the specular reflection method near a reflecting boundary has been shown to
 be superior to other methods such as rejection, multiple rejection, and interruption.

 An apparent paradox arises when using (1.7) and other schemes: while the pdf
 PAt(yit\x,s) of the solution of (1.7), (1.8), (1.10), (1.11) converges to the solution
 of the FPE (1.3) and the initial condition (1.5), each approximant PAt(y, t | x, s) does
 not satisfy the boundary condition (1.6), not even approximately; that is, the error
 does not decay as At - > 0. For a general diffusion coefficient and drift term, the
 boundary condition is not satisfied even for the case of a reflecting boundary condi-
 tion. This problem plagues other schemes as well. The apparent paradox is due to
 the nonuniform convergence of PAt(y, t\x,s) to the solution p(y, t\x,s) of the FPE,
 caused by a boundary layer in PAt(y,t\x,s), as is typical of boundary behavior of
 diffusion approximations to Markovian jump processes. The limit p(y,t\x, s), how-
 ever, satisfies the boundary condition (1.6) for some k. Our analysis can be extended
 to other schemes in a straightforward way. It is well known that the Euler scheme
 produces an 0{\fAt) error in estimating the mean first passage time to reach an
 absorbing boundary. There are several recipes to reduce the discretization error to
 O(At) [29], [30], [31], [32], [33]. Another manifestation of the boundary layer is that
 the approximation error of the pdf near absorbing or reflecting boundaries is O(y/At),
 and some methods, including [1], [34], reduce this error to O(At). Thus, we expect
 the formation of a boundary layer of size O(y/At) for the Euler scheme (1.7) with the
 boundary behavior (1.10).

 This paper is concerned with the convergence of the partially reflecting Markovian
 jump process generated by (1.7), (1.10) in one and higher dimensions. We show that
 this scheme, with the additional requirement that the pdf converges to the solution
 of the FPE with a given Robin boundary condition, defines a unique diffusion process
 with partial reflection at the boundary. This definition is then generalized to higher
 dimensions. In contrast to Collins and Kimball's [22] discrete scheme, this definition
 is not restricted to lattice points, and the drift and diffusion coefficients may vary.
 The advantage of the current suggested design (1.10) is its simplicity, which is both
 easily and efficiently implemented and amenable to analysis. There is no need to
 make any assumptions on the structure of the diffusion coefficient or the drift. From
 the theoretical point of view, it serves as a physical interpretation for the behavior of
 diffusive trajectories near a reactive boundary.

 Our main result in the one-dimensional case is the relation between the reactive

 "constant" /c(£) and the absorption parameter P for the dynamics (1.1) on the positive
 axis with drift and with a variable diffusion coefficient,

 (1.12) K(t) = rPJa(0A), r = -=.

 The relation (1.12) is new for diffusion with variable coefficients. The value r = 1/y/n
 is different from values obtained for other schemes, e.g., from the value r = l/v7^,
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 848 A. SINGER, Z. SCHUSS, A. OSIPOV, AND D. HOLCMAN

 predicted by the discrete random walk theory of radiation boundaries [22]. Values of
 r for other schemes are given in [8]. We show the effect of using (1.12) in numerical
 simulations.

 The scheme (1.10) is generalized to diffusion with drift and anisotropic constant
 diffusion matrix a(t) in the half-space, x\ > 0, with partial oblique reflection. We
 show that the Robin boundary condition is recovered if and only if trajectories are
 reflected in the direction of the unit vector

 (771

 where n is the unit normal to the boundary. The radiation parameter n{x,t) in
 the d-dimensional Robin boundary condition and the absorption parameter P(x) are
 related by

 (1.14) K(x,t) = rP(x)y/an(t), xx = 0,

 with r given in (1.12) and an(t) = nTa-(t)n. The relation (1.14) is new for higher-
 dimensional diffusion in a half-space with drift and anisotropic diffusion matrix.

 In the most common case of constant isotropic diffusion our result extends to
 domains with curved boundaries. This is due to the fact that a smooth local mapping
 of the domain to a half-space with an orthogonal system of coordinates preserves
 the constant isotropic diffusion matrix, though the drift changes according to Ito's
 formula. In this case the vector v coincides with the normal n.

 2. Boundary layer analysis in one dimension. The aim of the boundary
 layer analysis below is to examine the convergence of the pdf PAt(y,t\x,s) of the
 solution x&t(t) of (1.7), (1.8) to the solution p(y,t\x, s) of (1.3)-(1.6), and to find
 the relation between the parameter P of (1.10) and the reactive constant k in (1.6).
 Using abbreviated notation, the pdf PAt(2/>£|#>s) = PAt(y,t) satisfies the forward
 Kolmogorov equation [15], [16], [17], [18], [19], [35]

 (y - x - a(x, t) At)

 For P = 0 the pdf PAt(y,t) satisfies the boundary condition

 (2.2) ^^Z = 0)
 oy

 which is obtained by differentiation of (2.1) with respect to y at y = 0. If P ^ 0, we
 obtain

 oy y/4K<r(0,t)

 which holds also in the limit At - * 0. However, the order of the limits At - > 0 and
 y I 0 matters; indeed,

 Um nm lim^gi*; nm ( z.4) Um nm lim^gi*; nm
 At- At- o 0 3/|0 3/|o dy dy y|0At- yioAt- ( o dy At- At- o 0 3/|0 3/|o dy dy y|0At- yioAt- (
 Um nm lim^gi*; nm ( z.4) Um nm lim^gi*; nm
 At- At- o 0 3/|0 3/|o dy dy y|0At- yioAt- ( o dy At- At- o 0 3/|0 3/|o dy dy y|0At- yioAt- (
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 PARTIALLY REFLECTED DIFFUSION

 The limit of (2.3) is not the boundary condition that the limit function p(y, t) =
 limAt->oPAt (?/>£) (for y > 0) satisfies. To find the boundary condition of p(y,t), in
 either case P = 0 or P ^ 0, we show below that p(y,t) satisfies the FPE (1.3) and
 the initial condition (1.5) for all y > 0. Since for P = 0 the simulation preserves
 probability (the population of trajectories),

 (2.5) 0:  p(x,t)dx = -  t uyy, Ljpyy, lj = j yy, i)-

 Equation (2.5) is the no flux boundary condition. The discrepancy between (2.5) and
 (2.2) is due to the nonuniform convergence of PAt(2/> t) to its limit p(y, t) in the interval.
 There is a boundary layer of width O(\/At), in which the boundary condition (2.2) for
 PAt(y,t) changes into the boundary condition (2.5) that p(y,t) satisfies. To analyze
 the discrepancy between (2.2) and (2.5), we introduce the local variable y = rjy/Ai
 and the boundary layer solution

 (2.6) PBL(r), t) = PAt(t?v At, t).

 Changing variables x = £v At in the integral (2.1) gives

 The boundary layer solution has an asymptotic expansion in powers of

 (2.8) pbl(ti, t) - pfL{^ t) + VAtpgifa, t) + At pg[(ij, t) + • - • .

 Expanding all functions in (2.7) in powers of y/At and equating similar orders, we
 obtain integral equations that the asymptotic terms of (2.8) must satisfy. The leading
 order 0(1) term gives the Wiener-Hopf-type equation on the half-line

 for 77 > 0. The kernel

 is an even function of r\ and £; i.e., K(r\,£) = K(-rj^) = K(rj,-£) = K(-rj,-l
 Therefore, we extend Pfl£(£,t) to the entire line as an even function (p^(£,£)
 Pj?r (-&*)) and rewrite (2.9) as
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 for -oo < rj < oo. The only solution of the integral equation (2.11) is the constant

 function, that is, p§L(v^) = /(*)> independent of 77. This follows immediately from
 the Fourier transform of (2.11), whose right-hand side is a convolution.

 Away from the boundary layer the solution admits an outer solution expansion

 (2.12) Pout(v, t) ~ pZirriy, t) + VAtp^

 where Pout satisfies the Fokker-Planck equation (1.3) and the initial condition (1.5).
 Indeed, the integrals in (2.1) are of Laplace type with the small parameter A£. For
 interior points y » y/At, the second integral, which represents only boundary inter-
 actions, is negligible relative to the first. We change variables in (2.1) by setting

 y - x - a(x, t) At

 and extend integration over the entire line in the first integral and expand all functions
 in powers of y/At. The resulting integrals are moments of the normal distribution.
 We obtain

 At)-pAt(y,t) d[a(y,t)pAt(y,t)} d2[a(y,t)pAt(y,t))
 At dy + dy2

 The leading term in the expansion of PAtuM) is Pbi/rU/>^)> which therefore satisfies
 the Fokker-Planck equation (1.3). The initial condition (1.5) is recovered from the

 Gaussian integral as At - > 0. The boundary condition that Pouriv^) satisfies can
 be determined only after the boundary layer is resolved by matching. The leading
 order matching condition of the boundary layer and the outer solutions is

 limp™(v,t)=p%>(0>

 (2-13) PKB'L(v,t)=P%lj,

 The matching condition at order v At gives

 which means that pBL{r), t) is asymptotically a linear function of 77; therefore the limit
 of its derivative is a constant. Thus the matching condition reduces to

 (2.14) lim -*»£'»*> = r™

 The first order boundary layer term satisfies the integral equation
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 *»(q,*) r pgite*) rr r fa -a
 MO,*)/) x/47ra(0,0 I L **(<M

 r,^^)"

 Evaluating explicitly the last four integrals in (2.15) and using (2.13) gives

 Differentiating (2.16) with respect to rj and integrating by parts, we obtain

 dp{Bi(v,t) 1
 -exp"MM /

 we rewrite (2.17) as
 (2.19)

 (2.20) 0(77,0 =

 Since (/>(rj, t) is an odd function of 77, we can define g(rj, t) for negative values as an
 odd function by setting g{r),t) = -g{-r},t) for rj < 0. Then (2.19) can be rewritten
 as

 (2.21) g(V, t) = <j>(V, t) + /
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 which in Fourier space is

 Using the Wiener-Hopf method, we decompose

 (2.23) g(k,t)=g+(k,t)+g-(k,t),

 where g+(rj) = g(fi)x[otoo)(fl)i 9-(v) = 9(v)X(-oo,o](v)' The Fourier transform g(k,t)
 exists in the sense of distributions, and #±(fc,£) are analytic in the upper and lower
 halves of the complex plane, respectively. Taylor's expansion of 4>(k, t) in (2.20) gives
 (2.24)

 The nonzero poles of (2.22) split evenly between g+(k,t) and #_(&,£), and using
 #+(&,£) = - g~(- fe,i), the pole at the origin gives
 (2.25)

 0+(M) = ipZrM -=L- - ~w> :r*> 1 + O(k) ss fc-0.

 Inverting the Fourier transform p+(fc, t), by closing the contour of integration around
 the lower half-plane, we obtain

 The matching condition (2.14) implies

 (M7) e&m = p(o) (M) [^L^ _ ^fe ^fe ),t)-q(0,t)l *(<M) ['

 Multiplying by a(0, £) and rearranging, we obtain the radiation boundary condition

 (2.28) -J(O,t) = s- k(0,«/rT(0>«) -a(0,t)p^T(0,t) =

 Since p(y,t) =Pour(y^)^ ^e reactive "constant" in (1.6) is

 (2.29) K(t) = V"A

 3. Numerical simulations in one dimension. The explicit analytical solu-
 tion of the FPE (1.3) with the initial condition (1.5) and the radiation boundary
 condition (1.6) for the case of vanishing drift (a = 0) and constant diffusion coeffi-
 cient Mx.t) = a) was first given by Bryan in 1891 [36] (see [37, sect. 14.2, p. 358]):

 z f k(x + #o + fit) 1 r \x + #o + 2nt
 - exp < -
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 PARTIALLY REFLECTED DIFFUSION 853

 The first term in (3.1) is the fundamental solution of (1.3) and (1.5) with a reflecting
 boundary condition, whereas the second term may be transformed into

 "TWA •»{ - M- 4a, )«•
 which represents the density due to a line of exponentially decreasing sinks extending
 from - xo to - oo. The method of Laplace transforming (1.3) with respect to t was
 later employed [1], [38] to obtain explicit analytical solution for the FPE (1.3)-(1.5)
 with a constant diffusion coefficient and a (not necessarily vanishing) constant drift
 term a(x, t) = a:

 (x - x0 - at)2 } f ax0 (x + x0 - at)2

 2k + a (ax + k[x + x0 + (k + a)t] 1 fg + x0 + (2k + a)t"[
 2a eXP\ a JerC[ yf^i \

 Setting k = 0 in (3.2) reduces to Smoluchowski's [39] explicit analytical solution for a
 reflecting boundary with a constant drift term, while setting a = 0 reduces to Bryan's
 solution (3.1).

 We conducted several numerical experiments in which n = 107 trajectories were
 simulated according to the Euler scheme (1.7) with the boundary behavior (1.10). The
 diffusion coefficient was constant a = 1, and the reactive constant was k = 1, giving
 P = y/n in (2.29). The trajectories were initially located at xo = 1> and their statistics
 were collected at time t = 1 and compared to the predicted p(x,t = l|xo = 1).
 The convergence of the scheme was tested by using four different time steps, At =
 io-\io-2,io-3,io-4.

 The first experiment corresponds to a vanishing drift a = 0. Figure 1 shows
 the convergence of the numerical scheme to the analytic solution (3.1). The rate
 of convergence of the numerical scheme to the analytic solution is y/At. This is
 demonstrated, for example, by the survival probability

 •o,0= / p(x,t\xo)dx
 Jo

 of finding the trajectory inside the domain at time £, that is, the probability that the
 trajectory was not absorbed prior to t. Integrating (3.1) gives pSUr(lj 1) = 0.77095 . . .
 for a = k = 1. The survival probability is estimated numerically by the ratio of the
 number of survived (unabsorbed) trajectories n8ur and the total number of simulated
 trajectories n = 107. Table 1 shows that the convergence rate of the estimated sur-
 vival probability to its analytic value is y/At^ as predicted by our boundary layer
 analysis. The statistical estimation (variance) error due to the finite number of simu-
 lated trajectories is y/pSur(l - Psur)/ft- = 0.00013 . . . , which is an order of magnitude
 smaller than the smallest (bias) error obtained for At = 10~4 (see Table 1).

 In the second experiment, the drift term a = - 1 shifts the density leftward and
 causes more trajectories to react with the boundary. Figure 2 shows the convergence
 of the numerical scheme to the analytic solution (3.2).

 The final experiment corresponds to a reflecting boundary, P = k = 0, and a
 constant nonvanishing drift toward the boundary a = - 1. We simulated n = 108 tra-
 jectories to obtain a finer resolution at the boundary. Figure 3 shows a comparison
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 Fig. 1. No drift: the analytical solution (3.1) (magenta) and the three numerical densities
 At = 10"1 (blue). At = 10~2 (green), At = 10~3 (red) approaching it from below. The numerical
 density of At = 10~4 is not shown because it is difficult to distinguish it from the analytic density.
 (Parameters: a = K = xo = t = l. a = 0, P = x/tt, n = 107.)

 Table 1

 Survival probability: the difference between the analytic value of the survival probability pSUr =
 0.77095 . . . and its numerical estimation n8ur/n decreases by roughly \/l0 whenever At is decreased
 by an order of magnitude. (Parameters: o* = K = xo = t = l,a = 0, n = 107.^

 At

 10"]
 10"'

 10-

 10-<

 Psur - Usur/n
 0.0456

 0.0132

 0.0039

 0.0011

 between the analytical solution (3.2) and the numerical densities for At = 10 *, 10 2
 The no flux condition J = 0 of a reflecting boundary together with (1.4) gives a neg-
 ative boundary derivative, Pj/(O,£) = - p(0,£) < 0. In particular, the analytic solution
 (3.2) satisfies ^(0, 1) = -p(0, 1) = -(2 + y/n) / \2yfi:) « -1.06. The numerical densi-
 ties, however, are flat at the boundary. Their first derivatives vanish at the boundary,
 as predicted in (2.2) and shown in Figure 3. The first derivative changes from 0 to
 0(1) on an interval of length O(\/At), manifesting a boundary layer behavior, though
 there is no such behavior in the density itself.

 4. Diffusion in Rd with partial oblique reflection at the boundary. We
 consider the d-dimensional stochastic dynamics

 in the half-space

 x = a(x,t) + V2B(t)w
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 PARTIALLY REFLECTED DIFFUSION

 Fig. 2. Drift, a = - 1: the analytical solution (3.2) (magenta) and the numerical densities
 At = 10" x (blue), At = 10"2 (green), At = 10"3 (red) that approach it from below. (Parameters:
 a = K = xo = t = l, P = x/tt, n = 107.)

 Fig. 3. Drift, a = - 1, reflecting boundary P = k = 0: the analytic solution (3.2) (red) and the
 numerical densities At = 10"1 (blue) and At = 10~2 (green) with n - 108 simulated trajectories to
 obtain a finer boundary resolution. (Parameters: a = k = xq = t = 1.)
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 where w is a vector of d independent Brownian motions and we assume that the
 diffusion tensor a(t) = B(t)BT(t) is uniformly positive definite for all t > s. The
 case of space-dependent diffusion involves many technically complicated calculations
 and will be considered in a separate paper. We use henceforth the abbreviation
 &(t) = a. The radiation condition (1.6) becomes

 (4.2) -J(y,t\x,8)-n = K(y,t)p(y,t\x,8), for y e dft, x e ft,

 where the components of the flux vector J(y, t\x,8) are defined by

 d d
 (4.3) Jk(y, t\x,s) = -[ak(y, t)p(y, * I *,«)] + £ 55-7 [<rjMy, * I *, «)] 1

 where ahk axe the elements of the diffusion matrix <r. The Fokker-Plank equation for
 the pdf of x(t) can be written as

 (4.4) ™"^' --VF-JfotIg,*) for all y,xEft.

 If x € ft, but

 ?' = a? + o(x, *) At + y/2B(t) Aw(t, At) $ ft,

 the Euler scheme for (4.1) with oblique reflection in dQ reflects the point x obliquely
 in the constant direction of v to a point x" G ft, as described below. First, we denote
 by x'B the normal projection of a point x1 on 9ft, that is, x'B = x1 - (xf - n)n. Then
 we write the Euler scheme for (4.1) with partially reflecting boundary as

 ;' for x'eft,

 x" w.p. l-P(x'B)VAt if x'^ft,
 terminate trajectory w.p. P {x'B) vAt if x' g ft.

 The value of the termination probability P(x'B) vAt, which varies continuously in
 the boundary, is evaluated at the normal projection of the point x' on the boundary.
 The oblique reflection in the direction of the unit vector v (v\ ^ 0) is defined by

 (4.6) x» = x>-^v.

 Note that x'{ = -xi guarantees that the reflected point of a crossing trajectory is
 inside the domain ft. The fact that the normal components of x" and x1 are of equal
 lengths makes the high-dimensional boundary layer analysis similar to that in one
 dimension. Normal reflection corresponds to v = n = (1, 0, . . . , 0).

 We note that for a point y € ft, we can write Pr{a&" = y} = Pr{x' = y'}, where

 is the oblique reflection of y' (see Figure 4). Given y, (4.7) defines y1 as

 (4.8) y1 = y - 2^v.
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 Fig. 4. A simulated trajectory can get from x to y in a single time step At in two different
 ways: (i) directly from x to y, without crossing the boundary, and (ii) by crossing the boundary from
 x to y' and reflection in the oblique direction v with probability 1 - P(y'B)y/Ai to y. The reflection
 law (4.5)-(4.7) satisfies y{ = -3/1 .

 As in the one-dimensional case, the forward Kolmogorov equation is

 i(x,t)At,y)'

 We construct a boundary layer of width O(vAt) in the normal direction to the bound-
 ary. The layer extends infinitely in the d - 1 directions tangent to the boundary

 In other words, Pbl(7/i^+2/b^) = PAt(m v At n+yB, t), where yB = (0, y2, 2/3, • • • , Vd)>
 As in the one-dimensional case, we assume the asymptotic expansion

This content downloaded from 129.199.19.246 on Fri, 06 Sep 2019 09:57:32 UTC
All use subject to https://about.jstor.org/terms



 858 A. SINGER, Z. SCHUSS, A. OSIPOV, AND D. HOLCMAN

 and substitute

 in the integral (4.9). We obtain

 '6>o v^r

 xexp \--B[Z + a(yB,t)\fKt,mn--±v\\ \dt + O(te).

 We calculate separately the integral of the first and second terms in the braces. Sub-
 stituting

 (4.15) z = &

 in the first integral of (4.14) transforms the domain of integration into

 (4.16) zn> - £

 where n = ll°'1y2nll is a unit vector and an = nT<rn = ||<71/2n||. Similarly, we

 transform the second integral by substituting z1 = a l'2 (£ - rjin + -^ v). Using
 the expansion (4.12), we obtain at the leading order the integral equation

 = (4^72 X.ft>_^ pBi ((* + V*nx- n)n + yB, t) exp ^-^-j dz

 Integrating in the d - 1 directions orthogonal to n yields

 V4?r Jjbjl. L 4 .

 This is the same leading order integral equation as that of the one-dimensional case
 (2.9); thus the solution is independent of r?i, and matching to the outer solution gives

 (4.17) Pmmn + yB,t)=p%l
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 To evaluate the O(vAi) terms, we expand in the first integral in (4.14)

 B(€ + a(yB,t)VAt,rnn) = (£ - rjm) • a~l(^ - run)

 (4.18) + VAt2a(yB,t) - cr"1^ - 77m),

 and in the second integral

 - a(yB,tWAt, mn--±v) = [t-ri1n + -±v).<r-l[t- iftn^i

 (4.19) + VAt 2a(yB, t) • <r~l [£ - rnn-^v

 The OiyAt) contribution of the drift term for the first exponential term is

 The second exponential has the same contribution, so the overall contribution of the
 drift to the O(y/At) term is

 Now, we expand

 VAt {<J1/2z)B, t )= p^}L ((r/i + v^z • h)n + yB,t)

 faz"h)n + yB, t) • (<rL/'z)B + O(At).

 Together with (4.17), the expansion (4.22) reduces to

 = Pout Wb, *) + VAtVp^uT (lte> *)

 Integrating as above, we obtain the O(y/Ai) integral equation as

 yJ^KOn J0
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 Differentiating with respect to 771 and integrating by parts (as was done in the one-
 dimensional case), we arrive at the integral equation

 v^:Jo - on - rpr^T\-^[-^r\!

 The Wiener-Hopf method requires the extension of the erfc function discontinuously
 as an odd function, that is, to define erfc(x) = sgn(x)erfc(|x|). Following the calcu-
 lations of the one-dimensional case, it remains to determine the small k behavior of
 the Fourier transform of erfc(x). Using

 (4.23) / erfc - J= exp{ifer/} dry - 2ik / erfc - J= )r)dr) = 2ikan
 J-00 \2V^n/ Jo \2v^n/

 we obtain, as in (2.24),

 771-^00

 x/7rcrn -~" "- \an

 Combining with the matching condition

 (4 24) lim ^t>LVIL vw>vj _ ~ruurw

 we obtain

 *)PbuT\VB>t) _ (o)

This content downloaded from 129.199.19.246 on Fri, 06 Sep 2019 09:57:32 UTC
All use subject to https://about.jstor.org/terms



 PARTIALLY REFLECTED DIFFUSION 861

 The requirement that the pdf of the limiting diffusion process satisfies the Robin
 boundary condition leads to the only possible choice,

 (4.25) v = ^^

 Otherwise, we obtain an oblique derivative boundary condition. Since yB -> yB as
 At - ► 0, we obtain the Robin boundary condition

 -JouT\yB,t) • n = ^PouT\yB^) ' <™ ~ PoutVVb* *M»s> *) • n

 The reflection direction v of crossing trajectories is the conormal direction an. Nor-
 mal reflection (i.e., replacing v by n) gives rise to the boundary normal flux if and
 only if n is an eigenvector of the diffusion tensor <r. The limit of the outer solution
 as At - ► 0 is the solution of the Fokker-Planck equation (4.4) with the radiation
 boundary condition

 (4.26) -J(y,t)-n = K(y)p(y,t) for y e dft,

 where the reactive "constant" is

 (4.27) K(y)

 Note that normal reflection will not recover the normal flux of the radiation condition

 if n is not an eigenvector of a.

 5. Numerical simulations in two dimensions. To illustrate the conormal

 reflection law (4.25) in the Euler scheme (4.5)-(4.7) in the half-plane x > 0, we
 ran several numerical experiments. The simulations show the convergence of the pdf
 of the numerical solution to that of the FPE with the radiation boundary condi-
 tion (4.26)-(4.27). Unlike in the one-dimensional case, no explicit solution of the
 anisotropic Robin problem for the FPE in the half-plane is available, so we compare
 the statistics of the simulated trajectories with a numerical solution of the FPE. The
 latter is constructed by the stable Crank-Nicolson scheme on lattice points, where in
 each time step the sparse linear system is solved by the conjugate gradient method.

 In all numerical experiments the initial point is (xo, yo) = (0.3, 0), and the statis-
 tics are collected at time T = 0.5. We choose the reactive constant k = 1 and the

 diffusion matrix B in (4.1),

 which gives the anisotropic diffusion tensor

 We simulate n = 107 trajectories with time steps At = 10 ,10 ,10 ,10 4 in each
 experiment.
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 At = 0.1

 At = 0.01

 At = 0.001

 At = 0.0001

 Numerical Ax = Ay = 0.01

 1 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.2 1.2 1.4 1.4 1.6 1.6 1 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.2 1.2 1.4 1.4 1.6 1.6

 X-axis

 Fig. 5. The marginal density of x(T) with no drift and correct oblique reflection (the first
 experiment). The numerical solution of the FPE (blue) with grid size Ax = 0.01 and estimates from
 the simulation ofn- 107 trajectories with time steps At = 10~\ 10~2, 10~3, 10~4.

 In the first experiment the drift vanishes (a = 0). The normal n = (1,0) and the
 conormal en = (0.25, 0.4) point in different directions. The simulated trajectories are
 reflected in the conormal direction according to the prescription (4.25). The simulated
 and the numerical solutions of the FPE give the marginal densities shown in Figures
 5 and 6. Figure 5 shows the marginal density of x(T),

 v,y,T\xo,yo)dy,

 while Figure 6 shows the marginal density of y(T),

 p(y,T\xo,i  y,T\xo,yo)dx

 Table 2 gives the computed survival probability and indicates the convergence rate.
 We illustrate the importance of using the correct reflection law in the second

 experiment, in which the simulated trajectories are reflected in the normal direction
 n = (1,0). Clearly, the marginal density of x(T) coincides with that of the first
 experiment, because both oblique and normal reflections have the same x-coordinate
 (see (4.6)). However, the plot of the marginal density of y(T) differs significantly from
 that in the previous experiment. It is apparent from the comparison to the numerical
 solution of the FPE that the simulation does not recover the Robin boundary condition
 in the limit At - ► 0 (see Figure 7). Note that the peak of the density is at y > 0,
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 At = 0.1

 At = 0.01

 At = 0.001

 At = 0.0001

 Numerical Ax = Ay = 0.01

 Fig. 6. The marginal density of y(T) with no drift and correct oblique reflection (the first
 experiment). The numerical solution of the FPE (blue) with grid size Ax = 0.01 and estimates from
 the simulation ofn= 107 trajectories with time steps At = 10"1, 10~2, 10~3, 10~4.

 Table 2

 Survival probability for a = 0. The third column lists the error between the numerical value
 of the survival probability p9Ur = 0.6799545 from the solution of the FPE and its estimate n8ur/n
 from the simulation. The error decreases by about \/IO whenever At is decreased by an order of
 magnitude, indicating the convergence rate y/At of the simulation.

 At

 lO"1
 io-2
 10~3
 io-4

 Psur - n8ur/n
 0.0814708

 0.0351379
 0.0094052

 0.0025698

 though the reflection is normal. This is due to the anisotropy of the diffusion tensor,
 which causes the probability flux density vector to have a positive y component.

 In the third experiment the drift is the constant vector a = (-1,0), and the dif-
 fusion tensor is as in the first experiment. The density is shifted toward the boundary
 (see Figures 8 and 9). The results are summarized in Table 3.

 6. Summary and discussion. We have defined a diffusion process with par-
 tially reflecting boundary as a limit of Markovian jump processes generated by the
 Euler scheme for the dynamics in a half-space with partial absorption of exiting tra-
 jectories and partial oblique reflection in the boundary. We derived an expression
 for the radiation constant in the Robin boundary condition for the one-dimensional
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 At = 0.1

 At = 0.01

 At = 0.001

 At = 0.0001

 Numerical Ax = Ay = 0.01

 Fig. 7. The marginal density of y(T) with no drift and with normal reflection (the second
 experiment). The numerical solution of the FPE (blue) with grid size Ax = 0.01 and estimates from
 the simulation ofn = 107 trajectories with time steps At = 10"1, 10~2, 10~3, 10~4.

 Fokker-Planck equation for the case of diffusion with variable drift and diffusion coef-
 ficients, as a function of the absorption probability. We found that the Euler scheme
 for a diffusion in a half-space with variable drift and constant anisotropic diffusion has
 to be reflected in a particular oblique direction in order to recover the Robin boundary
 condition. Also for this case we found the radiation "constant" as a function of the

 local absorption probability on the boundary. We found a boundary layer of width
 O(y/Ki) in the pdf of the Euler scheme and solved the boundary layer equation, which
 is of Wiener-Hopf type.

 The boundary layer of PAt(y, t) makes the calculation of the boundary flux non-
 trivial. The net boundary flux of the simulation profile PAt(y, t) is

 which is the probability of the trajectories that propagate out of the domain per unit
 time, discounted by the probability of trajectories returned into the domain by the
 partially reflecting Euler scheme. Changing the order of integration and then changing
 the variable of integration into z = x/2y/crAt gives
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 At = 0.1

 At = 0.01

 At = 0.001

 At = 0.0001

 Numerical Ax = Ay = 0.01

 1 1.2 1.4 1.6 1.8

 X-axis

 Fig. 8. The marginal density of x(T) with drift a = (-1,0) and correct oblique reflection (the
 third experiment). The numerical solution of the FPE (blue) with grid size Ax = 0.01 and estimates
 from the simulation of n = 107 trajectories with time steps At = 10"1, 10~2, 10~3, 10~4.

 This straightforward calculation of the flux gives the correct radiation constant, pro-
 vided that

 The latter, however, depends on the mode of reflecting a trajectory from x' outside to
 x" inside the domain. We have shown that for x" = - x1 the provision holds; however,
 for other schemes, e.g., x" = -ax' (a ^ 1), the provision (6.3) fails in general, though
 (6.2) still holds. On the other hand, the differential form of the flux, (1.4), has to be
 obtained from (6.1) in the limit At - ► 0, which is not the case for PAt(y,t), though
 it is for pouT(y,t). This shows up in spades in the multidimensional case, because
 although (6.3) holds for any direction of reflection, the differential form of the flux is
 obtained in the limit only if the correct direction of oblique reflection is chosen.

 The generalization of the multidimensional case to domains with curved bound-
 aries and to a variable diffusion tensor <r(x, t) is not straightforward and will be done
 separately. Note that if the diffusion tensor is constant, but anisotropic, a local orthog-
 onal mapping of the boundary to a plane converts the diffusion tensor from constant
 to variable, as can be seen from Ito's formula. However, as mentioned in section 1, in
 the most common case of constant isotropic diffusion, our result extends to domains
 with curved boundaries because the mapping leaves the Laplacian unchanged, though
 the drift changes according to Ito's formula. In this case the vector v coincides with
 the normal n.
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 At = 0.1

 At = 0.01

 At = 0.001

 At = 0.0001

 Numerical Ax = Ay = 0.01

 Fig. 9. The third experiment (a = (-1,0), correct oblique reflection): y-marginal den-
 sities. The numerical solution (blue) is compared to four simulated solutions (with time steps
 At = 10"\ 10"2, 10~3, 10"4;. n = 107. Resolution: Ax = 0.01.

 Table 3

 Survival probability for a = (-1,0). The third column lists the error between the numerical
 value of the survival probability p8Ur = 0.3722893 from the solution of the FPE and its estimate
 risur/n from the simulation.

 Psur - nSur/n
 0.1180946

 0.0323365
 0.0090271

 0.0028988
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