Germán Sumbre
Neural circuit dynamics & behaviour
Neuroethology refers to the study of animal behaviour and its underlying neuronal mechanisms. Aiming to unravel how the nervous system processes cognitive functions and controls animal behaviour, the laboratory uses the zebrafish larva as the experimental model and a multidisciplinary approach, including two-photon calcium imaging and light-sheet microscopy (SPIM) to monitor the dynamics of large neuronal networks and even the whole brain, behavioural essays, optogenetics to monitor and manipulate the activity of specific neurons or entire circuits, and mathematical methods for the analysis of high-dimensional large datasets. It is the combination of disciplines, and the use of an intact behaving animal model that enables deciphering complex neuroethological questions such as perception of time, decision making, sensory perception, and the functional role of the brain’s intrinsic dynamics.
Ponce-Alvarez, A., Jouary, A., Privat, M., Deco, G., and Sumbre, G. (2018). Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics. Neuron 100, 1446–1459.e6. doi:10.1016/j.neuron.2018.10.045.
Pietri, T.; Romano, S., A.; Pérez-Schuster, V.; Boulanger-Weill, J.; Candat, V.; and Sumbre, G. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs. Cell reports, 19(5): 939-948.
Boulanger-Weill, J.; Candat, V.; Jouary, A.; Romano, S., A.; Pérez-Schuster, V.; and Sumbre, G. Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits. Current Biology, 27(12): 1707-1720.
Romano, S., A.; Pérez-Schuster, V.; Jouary, A.; Boulanger-Weill, J.; Candeo, A.; Pietri, T.; and Sumbre, G. An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics. PLOS Computational Biology, 13(6): e1005526.
Pérez-Schuster V, Kulkarni A, Nouvian M, Romano SA, Lygdas K, Jouary A, Dipoppa M, Pietri T, Haudrechy M, Candat V, Boulanger-Weill J, Hakim V, Sumbre G. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish. Cell Reports. 17, 4:1098-1112. doi: 10.1016/j.celrep.2016.09.065.
Jouary A, Haudrechy M, Candelier R, Sumbre G. A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae. Scientific Reports. 6, 34015; doi: 10.1038/srep34015
Candelier R*, Murmu MS*, Romano SA, Jouary A, Debregeas G*, Sumbre G.*. (2015) A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish. Scientific Reports. 5(12196) doi: 10.1038/srep12196
Romano SA, Pietri T, Perez-Schuster V, Jouary A, Haudrechy M, Sumbre G. (2015) Spontaneous Neuronal Network Dynamics Reveal Circuit’s Functional Adaptations for Behavior. Neuron. 85(5):1070-85. http://dx.doi.org/10.1016/j.neuron.2015.01.027
Pietri T, Roman AC, Guyon N, Romano SA, Washbourne P, Moens CB, de Polavieja GG, Sumbre G. The first mecp2-null zebrafish model shows altered motor behaviors. Front Neural Circuits (2013) 7:118.
Panier T, Romano SA, Olive R, Pietri T, Sumbre G, Candelier R, Debrégeas G. Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy. Front Neural Circuits (2013) 7:65.
Sumbre G, Muto A, Baier H and Poo MM. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature. (2008) 456(7218): 102-106.