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We model the motion of a receptor on the membrane surface of a synapse5
as free Brownian motion in a planar domain with intermittent trappings in6
and escapes out of corrals with narrow openings. We compute the mean con-7
finement time of the Brownian particle in the asymptotic limit of a narrow8
opening and calculate the probability to exit through a given small opening,9
when the boundary contains more than one. Using this approach, it is possi-10
ble to describe the Brownian motion of a random particle in an environment11
containing domains with small openings by a coarse grained diffusion pro-12
cess. We use the results to estimate the confinement time as a function of the13
parameters and also the time it takes for a diffusing receptor to be anchored14
at its final destination on the postsynaptic membrane, after it is inserted in the15
membrane. This approach provides a framework for the theoretical study of16
receptor trafficking on membranes. This process underlies synaptic plasticity,17
which relates to learning and memory. In particular, it is believed that the18
memory state in the brain is stored primarily in the pattern of synaptic weight19
values, which are controlled by neuronal activity. At a molecular level, the20
synaptic weight is determined by the number and properties of protein channels21
(receptors) on the synapse. The synaptic receptors are trafficked in and out of22
synapses by a diffusion process. Following their synthesis in the endoplasmic23
reticulum, receptors are trafficked to their postsynaptic sites on dendrites and24
axons. In this model the receptors are first inserted into the extrasynaptic25
plasma membrane and then random walk in and out of corrals through narrow26
openings on their way to their final destination.27
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1. INTRODUCTION29

The theoretical question we consider here is how receptors are directed30
toward their final destination on the membrane of a biological cell, if their31
movement is diffusion with neither a field of force nor a concentration32
gradient (see Fig. 1)? How long does it take for a receptor to diffuse from33
its point of insertion in the membrane to its final location? (by final loca-34
tion, we mean a specific place in the membrane that the receptor occupies35
for a period of time of between a few minutes to hours). What does this36
time depend on? In this paper, we attempt to answer some of these ques-37
tions by analyzing a mathematical model of the motion of the receptors.38

The mathematical description of the diffusive motion of a recep-39
tor on the cell membrane begins with the geometrical description of the40
membrane and of the obstacles the random walking receptor encoun-41
ters. We describe the motion of the receptor on the membrane as free42
Brownian motion in the plane (thus neglecting the surface curvature),43
with occasional trappings in and escapes from confinement regions, called44
corrals (see Fig. 1). We describe the corrals as smooth two-dimensional45
domains, whose boundary is reflecting, except for a narrow opening. The46

Location of insertion

Anchoring position
PSD

Confinement domain

Brownian trajectory of a receptor

Fig. 1. Trajectory of a receptor on the surface of a dendritic spine. The receptor is inserted
somewhere on the spine and moves by diffusion until it finds its final location inside a con-
finement domain. In part of its trajectory the receptor may be attached to a protein such as
stargazin, which slows it down. Attached proteins may have a tail inside the cell, interacting
with other plasmic proteins, located inside the cell.
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mean time the receptor spends in a corral is called the confinement time of47
the receptor (see Fig. 2). The main result of this paper is the calculation48
of the confinement time as a function of the parameters of the problem,49
and the application of this result to the interpretation of experimental50
measurements. This mean first passage problem is different than activated51
escape problems and its analysis leads to a different singular perturbation52
problem than classical escape from an attractor. The escape of the recep-53
tor can be effected also by thermal activation over the fence.54

In Sections 2 and 3, we describe the biological context by recalling55
some basic facts of receptor trafficking and its relation to synaptic56
plasticity. In Section 4, we calculate the confinement time of a free57

R

epsilon

Exit from a confinement domain

Fig. 2. A Brownian trajectory reflected at the boundary and exits through a narrow
opening. Typically, the trajectory fills a larger part of the domain.
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Brownian particle in a general domain with a small opening. We consider58
confinement domains that are either obstacles or termination domains.59
We apply the result to the estimation of the time it takes for a receptor60
to enter its final destination domain. Such estimation is relevant in the61
context of protein trafficking on a postsynaptic membrane. In Section 5,62
the confinement time is computed when the boundary of the confinement63
domain is made of charged proteins, creating a potential barrier with a64
small opening. In Section 6, we compute the probability that a Brownian65
particle exits a confinement domain when its trajectory can be termi-66
nated inside the domain. Termination of the trajectory corresponds to the67
anchoring of a receptor to a binding protein molecule. The notion of a68
final location, or termination of trajectories by anchoring may not reflect69
the fact that anchoring is very likely to be a reversible process. Anchor-70
ing is itself a reversible process, whose lifetime may be quite short, on the71
order of minutes, and it is known that even in the absence of synaptic72
activity receptors can enter and leave a synapse. The present computations73
can be used to estimate the confinement time as a function of biological74
parameters and also to estimate the time it takes for a diffusing receptor75
to find its functional destination, after insertion in the membrane. An76
acronym identification is presented at the end of the paper.77

2. FROM NEURO-BIOLOGY TO STATISTICAL PHYSICS78

A synapse(1) is functionally the place of physical storage of the79
“synaptic weight”, by which a signal coming from a pre-synaptic neu-80
ron is modulated by the post-synaptic neuron. Brief repetitive electri-81
cal stimulations of hippocampal neurons(2) are known to lead to a long82
lasting enhancement in synaptic strength.(3,4) This phenomenon, referred83
to as long term potentiation (LTP), is the evidence that activity induces84
persistent changes in synapses and is believed to underlie learning and85
memory. Stimulation at low frequencies induces a long lasting decrease in86
synaptic strength, called long term depression (LTD). However, the various87
steps of LTP/LTD induction are not yet fully elucidated and it is a chal-88
lenge of modern neurobiology to identify all the biochemical mechanisms89
involved in synapse regulation. In particular, modification of the synap-90
tic weight (the measure of synaptic strength) during LTP can be caused91
by a change in the biophysical properties of channels, such as conduc-92
tances, selectivity to ions, gating, and/or by an increase in the total number93
of protein channels (receptors).(5) Moreover, experimental evidence indi-94
cates that new AMPA receptors (see table of acronyms at the end of the95
paper) are inserted into synapses during LTP. AMPA receptors provide the96
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primary depolarization(6) in excitatory neurotransmission and the insertion97
or removal of the receptors affects the synaptic weight and therefore has98
to be very well controlled.(7,8) Not only AMPA receptors are trafficked,99
but also NMDA-receptors, which mediate Ca2+ influx into the synapse.100
Both are glutamate-activated transmitters.101

The number of AMPA receptors changes during synaptic plasticity102
and, in addition, a specific form of the receptor cycles continuously on103
and off the synaptic membrane. After their synthesis in the endoplasmic104
reticulum AMPA receptors are trafficked to post-synaptic sites on either105
neuronal dendrites or axons, but the route they take from intracellular ves-106
icles to synapses is not yet clear. From a biological point of view, a critical107
question is whether the receptors are directly inserted to the post-synaptic108
density (PSD), which is the area of the membrane where synaptic sites face109
the pre-synaptic terminal, or if they are first inserted into the extrasynaptic110
plasma membrane and later on move to the PSD.111

There are various forms of AMPA receptors, identified by their112
GluR-subunits, which determine the biophysical properties of a channel,113
e.g., their diffusion coefficient on the membrane, and therefore their114
confinement times.(9) AMPA receptors containing GluR2-subunit are imper-115
meable to calcium, whereas AMPA receptors with GluR1, three and116
four subunits are permeable. Moreover, each subunit has a different117
cytoplasmic tail (which dangle under the membrane), so that AMPA118
receptors can be classified into two classes: first, the AMPA receptors with119
long tails, such as GluR1, can only be inserted after synaptic activity, and120
second, the AMPA receptors containing a GluR2 subunit, have a short121
tail and are inserted constitutively.(8) Long and short tail AMPA receptors122
trafficked on the surface membrane are associated with different proteins.123
Recently,(9–11) single AMPA receptors attached to a Green Fluorescent124
Protein have been observed to diffuse in the extrasynaptic membrane, but125
to lose mobility when they enter a synaptic region. During their move-126
ment, AMPA receptors associate with accessory and scaffolding proteins,127
which are intracellular proteins that bind receptors and contribute to their128
stabilization at synapses and assist their trafficking in various subcellar129
domains.(8)130

The turnover of AMPA receptors at synapses is regulated by a large131
family of interacting proteins that thereby influence synaptic strength.132
Receptor movement on the membrane of a neuron seems to be a diffusion133
process (see review(9)), that moves rapidly within a constrained space134
(corral) for short periods of time, and then periodically escapes from135
these areas. The escape of a protein from any of these domains can136
be accomplished either by hopping over the the corral fence and/or by137
passing through the gaps when the membrane skeleton is transiently138
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dissociated. Thus the membrane can be viewed as a patchwork of sub-139
micron domains, within which diffusion is as fast as expected from theory.140
Fences that restrict transitions from one compartment to another separate141
these domains, thereby decreasing overall diffusion. Thus receptor traffick-142
ing leads to the ubiquitous problem of escape of a random walker, as well143
as to many other related mathematical problems.144

3. LATERAL MOVEMENT ON A POSTSYNAPTIC MEMBRANE145

Postsynaptic membranes of neurons contain specialized sub-domains,146
referred to as PSD, where hundreds of different proteins and other mol-147
ecules are clustered, all playing a specific role in the functioning of the148
synapse. In particular, a change in synaptic plasticity is correlated with a149
change of the biophysical properties of protein channels, due to covalent150
modifications of channels (7), or with a change in the total number151
of channels due, for example, to the insertion of new AMPA receptor152
channels. It has been demonstrated in refs. 9–12 that receptors can dif-153
fuse on the surface membrane of neurons and prior to their anchoring154
the diffusive motion of receptors in the membrane is nearly free diffusion.155
The random motion of receptors was observed in Ref. 9, and more spe-156
cifically, it has been reported that the motion of a receptor can switch157
between two different stages. In one stage, the receptor diffuses freely on158
the surface, and in the second stage, it diffuses in a confined region, where159
the diffusion constant is much smaller than that in the free diffusion stage.160
The confined regions are described as specific subdomains of the synaptic161
membrane and are typically few hundreds nanometers across.162

The mean time a Brownian trajectory reaches a given subdomain (or163
any one of a number of subdomains) of a given bounded domain, to164
which it is confined, depends on the domain, on the number, and on the165
sizes of the subdomains. The size of the confinement subdomain on a sur-166
face of the post-synaptic membrane is not known exactly. However, when167
a receptor enters a subdomain, where it can be anchored, the mean time it168
stays there provides much information about the possible bonds the diffus-169
ing receptor can make with scaffolding proteins. As a consequence of such170
binding the speed of diffusion is reduced, thus increasing the mean exit171
time and increasing the probability that the complex channel-scaffolding172
protein meets a protein that will ultimately stop the complex at its final173
location.174

Once a receptor is inserted into the membrane far from the PSD, it175
can remain in the extrasynaptic membrane instead of diffusing to the PSD.176
It can even diffuse in the direction of the dendrite, never to come back,177
and find another synapse, unless a potential barrier prevents the receptor178
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from escaping. Such a barrier has not been reported so far. If we assume179
that such a barrier exists, the mean time to reach a given confinement sub-180
domain is finite. The purpose of this work is to describe the movement of181
a receptor from the time it is inserted in the membrane until it is anchored182
at the PSD.183

When a receptor enters a confinement subdomain, it can either be184
anchored there immediately or leave. We compute the time it takes for185
a receptor to leave the confinement subdomain in two cases. First, when186
the confinement subdomain can be approximated by a disk, whose bound-187
ary is reflecting, except for one or more small openings that allow the188
receptor to escape. Second, when the confinement subdomain is bounded189
by a known potential barrier created by proteins. Explicit computation190
of the mean confinement time relates it to the geometry of the domain191
and to the diffusion coefficient of the complex receptor-scaffolding pro-192
tein. Thus, we expect that combining those computational results with193
experimental studies, it will becomes possible to study the effect on the194
movement of potential candidates for scaffolding proteins that bind to the195
receptor, thereby decreasing its diffusion coefficient. The increase in the196
confinement time was reported in ref. 9 when a receptor diffuse inside197
a confinement domain: it can be due to the binding with a scaffolding198
protein. To take into account the effect of the confinement subdomains,199
observed in a synapse, we will define later on, an effective diffusion con-200
stant that describes the random walk of ideal receptors in synapse. The201
definition is based on the diffusion time from one confinement subdomain202
to another. The coarse grained diffusion constant is computed by using203
the mean confinement time.204

The increase in confinement time was reported in ref. 9. Combining205
the probability that a receptor enters and leaves a confinement domain206
without being anchored (a synapse contains many confinement subdo-207
mains), we define an effective diffusion coefficient that describes the ran-208
dom walk of receptors from one confinement subdomain to another as a209
coarse grained diffusion process.210

Finally, a synapse is considered to be the fundamental unit of the211
memory at a subcellular level and is a reliable storage compartment of212
information over years, while the life time of its basic constituent recep-213
tors, such as AMPA receptors, is of the order of few hours.(13) In order214
to maintain the synaptic weight and to insure the stability of the syn-215
apse in the absence of any input signal, a daily turnover of receptors has216
to be very well regulated. Defected receptors have to be replaced without217
increasing the total number of active receptors. It is not clear what are the218
fundamental mechanisms that regulate this turnover, neither is known the219
precise ways by which the number of receptors is detected at each moment220
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of time. Finally, the estimation of the confinement time gives a constraint221
of the time it takes for a receptor to travel on the membrane before being222
anchored.223

4. RECEPTOR MOVEMENT ON A MEMBRANE224

Receptors diffuse on the surface membrane of a nerve cell, which225
is composed of many sub-compartments of various sizes and contains226
assemblies of various proteins, such as the PSD. Each compartment can227
absorb a receptor or release one. The movement of receptors is not sim-228
ply described as a free diffusion in a surface with obstacles, but rather229
the movement can be decomposed into two type of time-periods; one time230
period is defined when the receptor diffuses freely and the second when231
it is confined in a corral. There, the receptor is trapped, but eventually232
escapes. Back on the free side of the membrane, it can reach another con-233
finement domain, until it is finally anchored for a certain time somewhere.234
We calculate below the mean time of each type.235

4.1. Mean Escape Time from a Bounded Domain236

We begin with a receptor inside a confinement subdomain �, where237
it can be bound to a protein. The mean time it stays in the confinement238
subdomain is called the confinement time. We assume that the boundary239
∂�, is reflecting for the diffusing receptor, except for a small opening. We240
represent the opening as an absorbing part of the boundary, ∂�a , and the241
remaining part of the boundary, ∂�r =∂�−∂�a , is reflecting. The length242
of ∂�a is assumed small. More specifically, if ∂�1 is the connected com-243
ponent of ∂� that contains ∂�a , assume that244

ε = |∂�a|
|∂�1|

�1.
245

First, we review the general theory.(14,15) We assume that ∂� is an246
analytic surface and that ∂�a is a d − 1-dimensional subdomain of ∂�,247
whose d − 2-dimensional boundary is also analytic (for d = 2 the lat-248
ter boundary consists of isolated points). The transition probability den-249
sity function of a Brownian trajectory x(t), with diffusion constant D, is250
defined as251

p(x, t |y) dx =Pr {x(t)∈x +dx |x(0)=y} .252
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It satisfies the diffusion equation253

∂p(x, t |y)

∂t
=D�xp for x,y ∈�254

with the initial condition255

p(x,0 |y)= δ(x −y)256

and the boundary conditions257

∂p(x, t |y)

∂n(x)
= 0 for x ∈ ∂�r, y ∈�,

258
p(x, t |y) = 0 for x ∈ ∂�a, y ∈�.259

The first passage time to the absorbing boundary is defined as260

τ = inf {t >0 : x(t)∈ ∂�a}261

and the the mean first passage time (MFPT) to ∂�a , given that x(0)=y,262
is defined as the conditional expectation263

τ̄y =E [τ |x(0)=y]=
∫ ∞

0

∫
�

p(x, t |y) dx dt.
264

The confinement time τ̄ is defined as265

τ̄ =Eτ =
∫

�

E [τ |x(0)=y]p0(y) dy,
266

where p0(y) is the probability density function (pdf) of the initial point y.267

4.2. The Boundary Value Problem for τ̄ x268

To facilitate notation we use269

u(x)= τ̄x .270
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The function u(x) satisfies the mixed Neumann–Dirichlet boundary value271
problem (see for example, ref. 14)272

D�u(x) = −1 for x ∈�, (4.1)273
∂u(x)

∂n
= 0 for x ∈ ∂�− ∂�a, (4.2)274

u(x) = 0 for x ∈ ∂�a, (4.3)275

where D is the diffusion coefficient. Eqs. (4.1)–(4.3) are a classical mixed276
boundary value problem in potential theory that has been discussed at277
length in the literature. Explicit expressions for the solution are known for278
several domains, including a circular disk(16) (see Section 4.3.1). The sin-279
gular perturbation problem for a general domain with a small opening has280
not been solved so far.281

We assume, for convenience, that D = 1. To determine the solution282
of the mixed boundary value problem (4.1)–(4.3) in terms of Neumann’s283
function N(x, ξ), we recall(17) that N(x, ξ) is the solution of the bound-284
ary value problem285

�xN(x, ξ) = −δ(x − ξ) for x, ξ ∈�, (4.4)286
∂N(x, ξ)

∂n(x)
= − 1

|∂�| for x ∈ ∂�, ξ ∈�, (4.5)
287

and is defined up to an additive constant. It has the form288

N(x, ξ)=




1
σd−1

|x − ξ |−d+2 +vS(x, ξ) for d >2, x, ξ ∈�,

− 1
2π

log |x − ξ |+vS(x, ξ) for d =2, x, ξ ∈�,

(4.6)

289

where vS(x, ξ) is a regular harmonic function, σd−1 is the surface area of290
the unit sphere in R

d .291
To derive an integral representation of the solution, we multiply Eq.292

(4.1) by N(x, ξ), Eq. (4.4) by u(x), integrate with respect to x over �, and293
use Green’s formula to obtain the identity294

∮
∂�

N(x(S), ξ)
∂u(x(S))

∂n
dS + 1

|∂�|
∮

∂�

u(x(S)) dS
295

(4.7)296 =u(ξ)−
∫

�

N(x, ξ) dx.
297
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The second integral on the left-hand side of Eq. (4.7) is an additive con-298
stant, so we obtain the representation299

u(ξ)=
∫

�

N(x, ξ) dx +
∫

∂�a

N(x(S), ξ)
∂u(x(S))

∂n
dS +C′, (4.8)

300

where C′ is a constant to be determined from the boundary condition301
(4.3), S is the d −1-dimensional coordinate of a point on ∂�a , and dS is302
a surface area element on ∂�a . We set303

g(S)= ∂u(x(S))

∂n
,304

choose ξ =ξ(S)∈∂�a , and use the boundary condition (4.3), to obtain the305
equation306

0=
∫

�

N(x, ξ(S)) dx +
∫

∂�a

N(x(S′), ξ(S))g(S′) dS′ +C′ (4.9)
307

for all ξ(S)∈∂�a . The first integral in Eq. (4.9) is a regular function of ξ308
on the boundary. Indeed, due to the symmetry of the Neumann function309
we have from Eq. (4.4)310

�ξ

∫
�

N(x, ξ) dx =−1 for ξ ∈� (4.10)
311

and312

∂

∂n(ξ)

∫
�

N(x, ξ) dx =− |�|
|∂�| for ξ ∈ ∂�. (4.11)

313

Equation (4.10) and the boundary condition (4.11) define the integral314 ∫
�

N(x, ξ) dx as a regular function, up to an additive constant. Thus Eq.
315

(4.8) can be written as316

u(ξ)=
∫

�

N(x, ξ) dx +
∫

∂�a

N(x(S), ξ)g(S) dS +C, (4.12)
317

and both g(S) and C are determined by the absorbing condition (4.3)318

0=
∫

�

N(x, ξ(S)) dx +
∫

∂�a

N(x(S′), ξ(S))g(S′) dS′ +C
319

(4.13)320
for ξ(S)∈ ∂�a.321
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Eq. (4.12) can be considered an integral equation for g(S) and C. The322
normal derivative g(S) is a regular function of the d − 1 variables S =323
(s1, . . . , sd−1) for ξ(S) in the d −1 dimensional subdomain ∂�a , but devel-324
ops a singularity as ξ(S) approaches the d − 2-dimensional boundary of325
∂�a in ∂�.(18) Both can be determined from the representation (4.12) if326
all functions in Eq. (4.13) and the boundary are analytic. In that case the327
solution has a series expansion in powers of arclength on �a .328

4.3. MFPT Through a Small Opening in a Planar Domain329

When the size of the absorbing boundary is small an asymptotic330
approximation to the constant C can be found from Eq. (4.13). We can331
assume that the constant term in the expansion of the first integral in332
equation Eq. (4.13) vanishes, because otherwise, it can be incorporated333
into the constant C. With this assumption in mind, we rename the con-334
stant Cε.335

Consider now a bounded domain � ⊂ R
2, whose boundary ∂� has336

the representation (x(s), y(s)), the functions x(s) and y(s) are real analytic337
in the interval 2|s|� |∂�|=1, and338

(
x

(
−1

2

)
, y

(
−1

2

))
=

(
x

(
1
2

)
, y

(
1
2

))
.

339

We assume the absorbing part of the boundary ∂�a is the arc340

∂�ε ={|s|<ε}341

and ∂�−∂�ε is reflecting to Brownian trajectories in �. All variables are342
assumed dimensionless. We assume here that Neumann’s function,343

N(x, y; ξ, η)=− 1
2π

log
√

(x − ξ)2 + (y −η)2 +vS(x, y; ξ, η), (4.14)344

is known (that is, the harmonic function vS(x, y; ξ, η) is known). We note,345
however, that vS(x, y; ξ, η) is regular as long as either (x, y)∈� or (ξ, η)∈346
�, or both. If (x, y) ∈ ∂� and (ξ, η) ∈ ∂�, then the regular part contains347

the same singularity as −(1/2π) log
√

(x − ξ)2 + (y −η)2, so that the singu-348
lar part acquires a factor of 2 on the boundary.349



U
nc

or
re

ct
ed

 P
ro

of

Receptor Trafficking in a Synaptic Membrane 203

In this setup Eq. (4.13) can be written as350 ∫
�

∫ {
vS(x(s′), y(s′); ξ(s), η(s))

}
dx dy − 1

2π
log

√
(x − ξ)2 + (y −η)2

351

+
∫

|s′|<ε

{
ṽS(x(s′), y(s′); ξ(s), η(s))

352
(4.15)353

− 1
π

log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

}
354

×g(s′) ds′ =−Cε,355

where356

ṽS(x(s′), y(s′); ξ(s), η(s))=vS(x(s′), y(s′); ξ(s), η(s))357

+(1/2π) log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2358

is a regular function of its variables. The double integral in the first line359

of Eq. (4.15) is the regular function
∫

�

∫
N(x, y; ξ(s), η(s)) dx dy and can

360
be expanded into a power series in the interval |s|<ε,361

∫
�

∫
N(x, y; ξ(s), η(s)) dx dy =

∞∑
j=1

Njs
j , (4.16)

362

where Nj are known coefficients. As mentioned above, the sum is assumed363
to begin with j =1. Now, we expand364

g(s)=
∞∑

j=0

gj s
j , ṽS(x(s′), y(s′); ξ(s), η(s))=

∞∑
j=0

vj (s
′)sj (4.17)

365

for |s|<ε, where vj (s
′) are known coefficients and gj are unknown coeffi-366

cients, to be determined from Eq. (4.15).367
To expand the logarithmic term in the last integral in Eq. (4.15), we368

recall that x(s′), y(s′), ξ(s), and η(s) are analytic functions of their argu-369
ments in the intervals |s|<ε and |s′|<ε, respectively. In view of the obvi-370
ous identities (x(s), y(s)) = (ξ(s), η(s)), and [x′(s)]2 + [y′(s)]2 = 1, we can371
write for all n�0372 ∫ ε

−ε

(s′)n log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2 ds′ (4.18)
373

=
∫ ε

−ε

(s′)n log
{
|s′ − s|

(
1+O

(
(s′ − s)2

))}
ds′.

374
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We keep in Taylor’s expansion of log
{|s′ − s| (1+O

(
(s′ − s)2

))}
only the

leading term, because higher-order terms contribute positive powers of ε

to the series

∫ ε

−ε

log(s − s′)2 ds′ =4ε (ln |ε|−1)+2
∞∑

j=1

1
(2j −1)j

s2j

ε2j−1
. (4.19)

For even n�0, we have

∫ ε

−ε

(s′)n log(s − s′)2 ds′ = 4

(
εn+1

n+1
log ε − εn+1

(n+1)2

)

(4.20)

−2
∞∑

j=1

s2j εn−2j+1

j (n−2j +1)
,

whereas for odd n, we have

∫ ε

−ε

(s′)n log(s − s′)2 ds′ =−4
∞∑

j=1

s2j+1

2j +1
εn−2j

n−2j
. (4.21)

Using the above expansions in Eq. (4.15), we obtain a linear system of375
equations for the coefficients gj , that define them as linear functions of the376
constant Cε. In particular, g0 is proportional to Cε.377

The system of equations is obtained by comparing the coefficients of378
like powers of s in the expansion of (4.15), using the expansions (4.16)–379
(4.21),380

0=−
∞∑

j=1

Njs
j +

∫ ε

−ε

{−1
2π

log
[
|s′ − s|2

(
1+O

(
(s′ − s)2

))]
381

+
∞∑

j=0

vj (s
′)sj




∞∑
j=0

gj s
′j ds′ +Cε,

382

which gives the term of degree 0 as383

ε (ln |ε|−1) g0 +
∑
p

(
ε2p+1

2p +1
log ε − ε2p+1

(2p +1)2

)
g2p

384

= π

2

∫ ε

−ε

v0(s
′) ds′ +Cε. (4.22)

385
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The general term for j >0 is given by386

0 = −N2j + 1
π

∞∑
p=0

g2p

ε2p−2j+1

(2p −2j +1)j
+

∫ ε

−ε

v2j (s
′)g(s′) ds′,

387

0 = −N2j+1 + 2
π

∞∑
p=0

g2p+1
ε2p−2j+1

(2p −2j +1)(2j +1)
+

∫ ε

−ε

v2j+1(s
′)g(s′) ds′.

388

Equation (4.22) and389

1
2

∫ ε

−ε

g(s)ds =
∑
p

ε2p+1

(2p +1)
g2p

390

determine Cε. Indeed, integrating Eq. (4.1) over the domain, we see that391

∫ ε

−ε

g(s) ds =−|�|, (4.23)
392

and using the fact that
∫ ε

−ε

v0(s
′) ds′ =O(ε), we find that the leading term

393
in the expansion of Cε in Eq. (4.22) is394

Cε = |�|
π

[
log

1
ε

+O(1)

]
for ε �1. (4.24)

395

If the diffusion coefficient is D, Eq. (4.12) gives the MFPT from a point396
(ξ, η)∈� as397

τ̄(ξ,η) =u(ξ, η)= 1
D

∫
�

N(x, ξ) dx + |�|
πD

[
log

1
ε

+O(1)

]
for ε �1.

(4.25)398

The leading term in the expansion (4.25) is insufficient in general, because399
log ε may be comparable to 1, even if epsilon is quite small. It is impor-400
tant to obtain the O(1) term in the expansion. This is done below for a401
circular domain.402
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4.3.1. MFPT Through a Small Opening in a Circular Domain403

The explicit solution uε of the boundary value problem

D�uε(r, θ) = −1 for r <R,

∂uε(R, θ)

∂r
= 0 for ε <θ <π, −π <θ <−ε, (4.26)

uε(R, θ) = 0 for − ε <θ <ε,

is given in ref. 16. The application of the power series expansion method404
of the previous section begins with the solution of the Neumann problem405
in polar coordinates (see Appendix I)406

D�vε (R, θ) = 0 for r <R,407
∂vε(R, θ)

∂r
= h(θ) for r =R.408

It has the representation

vε(r, θ)=− R

2πD

∫ 2π

0
log

(
R2 −2rR cos(θ −φ)+ r2

)
h(φ) dφ +Cε,

(4.27)

where Cε is a constant to be determined. To solve Eq. (4.26), we set

uε(r, θ)= R2 − r2

4D
+ vε(r, θ)

D
, (4.28)

where

�vε (R, θ) = 0 for r <R, (4.29)
∂vε (R, θ)

∂r
= R

2
=Rf (θ) for |θ |>ε, (4.30)

vε (R, θ) = 0 for |θ |<ε. (4.31)

We set

∂vε (R, θ)

∂r
=Rg (θ) for |θ |<ε (4.32)

and use the Green function of the Neumann problem for a disk to write
the solution of the boundary value problem (4.29) as



U
nc

or
re

ct
ed

 P
ro

of

Receptor Trafficking in a Synaptic Membrane 207

vε (r, θ) = −R2

4π

∫
|φ|>ε

log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
dφ (4.33)

−R2

2π

∫
|φ|<ε

log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
g (φ) dφ +Cε.

This gives409

uε (r, θ)410

= R2 − r2

4D
− R2

2πD

∫
|φ|<ε

log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
411

×
(

g (φ)− 1
2

)
dφ +Cε.

412

To estimate the unknown function g, we use the absorbing boundary con-
dition of vε at r =R and θ = 0. The function g and the constant Cε can
be determined from

0=vε (R, θ)=−R2

2π

∫
|φ|<ε

log (cos 2 [1− cos (θ −φ)])

(4.34)
×

{
g (φ)− 1

2

}
dφ +Cε,

because413

∫
|φ|<π

log {2 [1− cos (θ −φ)]} dφ =0.
414

Using the expansion procedure described above (see also Appendix II), we
obtain that

Cε =R2
(

0.73+ (1+O (ε)) ln
1
ε

)
, (4.35)

when all series are truncated at O
(
θ12

)
. The expansion of the exact solu-415

tion of ref. 16 gives the value log 2 = 0.6931471806. Now, in the limit of416
small opening Eq. (4.33) gives417

vε (0,0)=Cε ∼R2
(

...73+ ln
1
ε

)
.

418
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It follows from (4.28) that the MFPT from the center of the disk to the
absorbing boundary is given by

τ̄0 =uε (0,0)∼ R2

D

(
.0.98+ ln

1
ε

)
. (4.36)

The exact value of the constant term is log 2 + 1/4 = 0.9431471806,(16)419
which indicates an error of about 4% of the power series approximation.420

421

Remark 1. In three-dimensional diffusion, if a particle (a receptor422
inside the confinement domain) is bound to a scaffolding protein of mass423
Ms, the diffusion constant of the system of the two proteins has to be424
recompute according to Einstein’s law(14)425

Ds = kBT

(M +Ms)γrs
,

426

where kB is Boltzmann’s constant, T is the absolute temperature, M +427
Ms is the mass of the complex receptor–protein, and γrs is the viscosity428
coefficient of the complex. Assuming the volume of the complex is the429
sum of the volumes of its components, Stokes’ law, as used in Einstein’s430
formula,(14) gives431

γrs =γr +γs,432

where γr, γs are the friction coefficients of the receptor and the scaffolding433
protein, respectively. The new diffusion constant of the system is now,434

D̄c = R2

kBT
(M +Ms) (γr +γs) .

435

Remark 2. For a cylindrical model of a protein moving on mem-
brane surface, the diffusion constant has been derived in ref. 19 and is
given by

D = kT

4πµh

(
log

(
µh

µ′R

)
−γE

)
, (4.37)

where R and h are, respectively, the radius and the height of the cylin-436
der, µ is the viscosity, µ′ is the viscosity coefficient of the aqueous phase437
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and γE is Euler’s constant. When a receptor of radius R1 is bound to438
a scaffolding protein such as stargazin of radius R2, we approximate the439
shape of the two link proteins as a cylinder of radius R1 +R2. The diffu-440
sion constant for the two proteins becomes441

D = kT

4πµh

[
log

(
µh

µ′ (R1 +R2)

)
−γE

]
.

442

Sometimes, the scaffolding protein is bound to a receptor and increases443
only the total length h and not the total radius. This is the case for444
PICK or GRIP proteins binding to an AMPA receptor, as describe in445
the review.(9) When the total length equals h1 +h2, the diffusion constant446
becomes:447

D = kT

4πµ(h1 +h2)

[
log

(
µ(h1 +h2)

µ′R

)
−γE

]
.

448

In general, a receptor is made of several sub-units which are integral mem-449
brane proteins(20). Accessory or scaffolding proteins may be bound to the450
receptors and it is not clear if these proteins are always bound to the451
receptors, or only under specific conditions. Some of the receptor’s subun-452
its may be stored in intracellular compartments and may be inserted in the453
plasma membrane only under specific circumstances.454

Remark 3. If the surface of the membrane contains many confine-
ment domains, the diffusion of a receptor can be described on a coarse
time scale as a random walk between confinement domains (or slower
Brownian motion). When the receptor is not in a confinement domain and
is free of the scaffolding protein, its Brownian motion is much faster than
that while it is inside a confinement domain and attached to a scaffolding
protein, because its diffusion coefficient is larger in the former than in the
latter case. Thus, we can describe the motion of the receptor as a random
walk between the confinement domains.(21,22) Assuming that the charac-
teristic distance between (circular) confinement domains is d, the coarser
random walk can be described as diffusion with a diffusion constant

Da = d2

τ̄0
= d2D

R2

(
log 2+1/4+ ln

1
ε

) , (4.38)

455
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assuming the diffusion is isotropic. This assumption is justified if the nar-456
row openings are distributed uniformly on the circles. If there is a pre-457
ferred direction, the two-dimensional diffusion tensor becomes anisotropic458
with a larger diffusion coefficient in the preferred direction.(14)459

When the synapse contains circular confinement domains of typi-460
cal area 350 nm2, (radius R ∼ 10.5 nm), the mean distance between the461
domains is around 0.13µm, and the free diffusion constant is 0.1µm2/s,462
the effective coarse grained diffusion constant is about 0.02 µm2/s, accord-463
ing to Eq. (4.38).464

4.3.2. The Mean Confinement Time465

Averaging the MFPT over a uniform distribution of initial positions466
inside the disk gives467

τ̄m = 1
πR2

∫ 2π

0

∫ R

0
uε(r, θ)r dr dθ, (4.39)

468

where uε(r, θ) is given by (4.28), and vε(r, θ) is the solution of Eq. (4.34).469
This gives470

1
πR2

∫ 2π

0

∫ R

0

R2 − r2

4D
r dr dθ = R2

8D471

and

1
πR2

∫ 2π

0

∫ R

0
vε(r, θ) r dr dθ =Cε. (4.40)

We have used the fact that for all r <R472

∫ 2π

0
log

(
R2 −2rR cos (θ −φ)+ r2

R2

)
dθ =0.

473

It follows that the mean confinement time τ̄m is given by474

τ̄m =Cε + R2

8D
=R2

(
log 2+ 1

8
+ (1+O (ε)) ln

1
ε

)
∼ R2

D

(
0.818+ ln

1
ε

)
.

(4.41)475

The difference between the mean time τ̄m and the confinement time, com-476
puted at the origin, is not significant for the scale we are interested in. As477
is typical for the exit problem,(14) the MFPT is independent of the initial478
point, except for a layer near the absorbing boundary.479
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4.3.3. Numerical Evaluations480

To estimate the mean confinement time τ̄ for a receptor, we use the481
values of the different parameters reported in refs. 10 and 23. For a recep-482
tor inside a confinement domain (see Fig. 2), we take D = 0.004 µm2/s,483
for R = 0.25µm, ε = 10−3 nm/(2π ×0.25) to find that τ̄ = 125 s. For a484
diffusion constant of D = 0.02 µm2/s, which is the free diffusion constant485
in a membrane, τ̄ =25. For a domain of area 350 nm2, which we assume is486
well approximated by a disk, using a diffusion coefficient of 0.025µm2/s,487
we find that the mean confinement time is around τ̄ =35 s.488

4.3.4. Confinement by a Potential Barrier489

If a receptor is confined to the corral by a high potential barrier490
�(x, y) (relative to the thermal energy per unit mass), with a single saddle491
point on its crest, the confinement domain � is bounded by the crest of492
the potential barrier (characterized by ∂�/∂n=0 on the crest). We assume493
that the potential barrier is narrow relative to the size of the domain and494
that �(x, y) = 0 away from the barrier. If there is a single minimum of495
the energy of the barrier (at a saddle point), the calculations of ref. 14,496
[Ch. 8.5, Eqs. (8.5.7)–(8.5.13)] give the confinement time for a three-dimen-497
sional diffusion as498

τ̄ = |�|ω‖
Dω⊥

exp
{

E

γD

}
, (4.42)

499

where500

ω2
‖ = ∂2�

∂s2
at the saddle point,501

ω2
⊥ = −∂2�

∂n2
at the saddle point,502

s is arclength along ∂�, D is the diffusion coefficient, E is the energy of503
the saddle point per unit mass on the barrier (the lowest energy of the504
barrier), and T is absolute temperature. The factor ω‖ is the frequency505
of oscillation in the stable direction of the saddle point (parallel to the506
boundary), and ω⊥ is the imaginary frequency in the unstable direction507
of the saddle point (e.g., perpendicular to the boundary). Note that in the508
case at hand �=0 throughout �, except for a boundary layer, whose con-509
tribution to the integral is negligible. Thus510 ∫

�

∫
e−�/γD dx dy =|�|,

511
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which simplifies Eq. (8.5.13) in ref. 14 to the result (4.42). The case of512
multiple saddle points is discussed in.(14)513

If the energy of the boundary is constant, E, the MFPT is given by514

τ̄ =
√

2π

D

√
γ |�|

ω⊥|∂�| exp
{

E

γD

}
, (4.43)

515

where γ is the friction coefficient (this is case (i) in [ref. 14, Eq. (8.5.15)]).516
It has not been established experimentally that there is hopping of AMPA517
receptors over a potential barrier. Rather, it is believed that the barrier of518
the corral is not stable and breaks down intermittently.519

4.3.5. Mean Time to Enter the PSD520

The mean time for a receptor to enter the PSD after insertion in
the membrane depends on the diffusion coefficient, the organization of
the synapse, the layout of confinement domains, and the distribution of
scaffolding proteins. The latter can decrease the diffusion constant when
attached to the receptor (see Fig. 1). When the diffusion of the receptor
is confined by a reflecting barrier to a domain � that contains a corral ω,
and the receptor is inserted somewhere is �−ω, the entrance problem to
ω is the exit problem from �−ω. Thus, if the opening ∂ωa in ∂ω is small,
that is, if ε=|∂ωa|/|∂ω|�1, the result (4.25) is still valid. In particular, for
an annulus D(R1,R2), of inner radius R1 and outer radius R2, where the
inner circle r =R1 represents the boundary of a PSD and contains a small
opening of length εR1, and the outer circle models a barrier that prevents
the escape of the receptor, Eq. (4.25) gives

τ̄ ∼ R2
2 −R2

1

D
ln

1
ε
. (4.44)

The mean entrance time for the annulus D(R1,R2) can be found
explicitly if the inner circle is absorbing while the outer circle is reflecting.
The boundary value problem (4.1)–(4.3) becomes

D�u = −1 for R1 <r <R2 (4.45)
∂u (R2, θ)

∂r
= 0, u (R1, θ)=0.

The solution (in radial symmetry) is given by521

u (r, θ)= R2
1 − r2

4D
+ R2

2

2D
log

r

R1
.

522
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In particular, if R1 � R2, we can write R2 = R, R1 = εR, with ε � 1.
Asymptotically, the MFPT from the outer circle to the inner circle is

τ̄ ∼ R2

2D
ln

1
ε
. (4.46)

In the same limit Eq. (4.44) becomes

τ̄ ∼ R2

D
ln

1
ε
. (4.47)

Comparing (4.46) with (4.47), we find that one is twice the other. This523
result indicates that the aspect angle of the absorbing boundary from it’s524
center determines the pre-logarithmic factor. While 2π for a full circle, it525
is π for an arc of length 2ε on an arc of length O(1).526

4.3.6. Numerical Computation of the Time to Enter into a527
Confinement Domain528

The range of exit times from a confinement domain is between 35 and529
125 s, depending on the diffusion constant and on the size of the domain.530

Using a free diffusion constant D = 0.1µm2/s, for a domain of area531
350 nm2, when the receptor is inserted at a distance of 1µm (we assume532
that the radius R of the unfolded synapse is 1µm), a lower bound on the533
expected insertion time is τ̄ = 25 s. This is an underestimate, because we534
have used only one the leading term in the expansion of the MFPT in Eq.535
(4.25).536

For a diffusion constant D = 0.02 µm2/s, which is calculated by aver-537
aging over many confinement periods, a PSD of diameter 350 nm, (that is,538
for R=4 µm), we find that a receptor enters in about 78 s. These numbers539
are within the range of values communicated in ref. 9.540

Remarks541

(i) The diffusion process does not require any other energy than the542
temperature of the cell, and for that reason receptor movement does not543
cost any chemical energy, but it requires some time, of the order of a few544
minutes. (ii) The time to anchoring is the sum of the time to enter and545
time the to reach the final position, which is of the order of the con-546
finement time. The time to anchoring, after insertion of the receptor in547
a membrane containing several confinement domains, is of the order of548
a few minutes. The more often a receptor’s trajectory enters confinement549
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domains, the longer is the time to to its anchoring, up to several min-550
utes. Binding to scaffolding proteins that change the diffusion constant551
increases the mean time to anchoring. (iii) The time to enter a PSD is552
more sensitive to the location of the point of insertion rather than to the553
size of the small opening in the barrier. In the regime, where the diffusion554
outside is faster than inside the confinement domain, the time spent inside555
is the main contributor to the anchoring time.556

5. THE EXIT DISTRIBUTION557

When the barrier contains several narrow openings of various sizes
the probabilities of exit through given openings are not necessarily the
same. Specifically, we consider the problem of escape from a planar
domain �, whose boundary, ∂� (|∂�| = 1), is reflecting, except for the n

absorbing arcs |s − sk| < εk, with
∑n

k=1 εk = ε � 1. The probability that a
trajectory that starts at the point (x, y) ∈ � escapes through arc i is the
solution of the boundary value problem

�u(x, y) = 0 for (x, y)∈�

∂u(x(s), y(s))

∂n
= 0 for |s − sk|>εk, ∀k (5.48)

u(x(s), y(s)) = δi,k for |s − sk|<εk, for each k =1,2, . . . , n,

δi,k =1 if i =k and zero otherwise. As above, we define the flux density on558
the absorbing boundary as an unknown function559

g(s)= ∂u(x(s), y(s))

∂n
.560

The representation formula for the solution is given by561

u(ξ, η)=
n∑

k=1

∫ sk+εk

sk−εk

N(x(s), y(s); ξ, η)g(s) ds +C, (5.49)
562

where N(x, y; ξ, η) is given in (4.14) and C is a constant. The function563
g(s) is defined in each one of the intervals |s − sk|<εk and has to satisfy564
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the boundary condition565 ∫ sk+εk

sk−εk

{
vS(x(s′), y(s′); ξ(s), η(s))

566
(5.50)567

− 1
2π

log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

}
568

×g(s′) ds′ =−C + δi,k for all
∣∣s − sj

∣∣<εj , j, k =1,2, . . . , n.569

Next, we expand g(s) in Taylor’s series in each interval |s − sk|<εk,570

g(s)=
∞∑

j=0

g(j)(sk)

j !
(s − sk)

j (5.51)
571

and determine the coefficients. The solvability condition for the problem572
(5.48) is573

n∑
k=1

∫ sk+εk

sk−εk

{
vS(x(s′), y(s′); ξ(s), η(s))

574

− 1
2π

log
√

(x(s′)− ξ(s))2 + (y(s′)−η(s))2

}
(5.52)

575
×g(s′) ds′ =0,576

Using the expansions (4.19)–(4.21) and (5.51) in the solvability condition577
(5.52), we obtain578

n∑
k=1

∫ εk

−εk

∞∑
j=0

(1+O(εk))
g(j)(sk)

j !
sj ds =0,

579

which is

n∑
k=1

∞∑
j=0

g(2j)(sk) (1+O(εk))

(2j)!

ε
2j+1
k

2j +1
=0. (5.53)

Using the expansions (4.19)–(4.21) in Eqs. (5.50) and (5.52) and equating580
the coefficients of like powers of s − sk on both sides of Eq. (5.50), we581
obtain at the leading order582

∞∑
j=0

ε
2j+1
k g(2j)(sk)

(2j)!(2j +1)

(
log εk − 1

2j +1

)
= δi,k −C

4
583
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and for higher orders584

∞∑
j=0

ε
j+1
k g(j)(sk)

j ! (j −2m+1)
=0 for k =1,2, ..., n, m=1,2, ...

585

First, we observe that586

g(2j+1)(sk)

(2j +1)!
=0 for k =1,2, ..., n, j =1,2, ...

587

To determine the even order derivatives and the constant C, we set588

xj,k = ε
2j+1
k g(2j)(sk)

(2j)!
,

589

and find that xj,k and C are the solutions of the system

∞∑
j=0

xj,k

2j +1

(
log εk − 1

2j +1

)
= δi,k −C

4
, for k =1,2, ..., n, (5.54)

∞∑
j=0

xj,k

2j −2m+1
= 0, for k =1,2, ..., n, m=1,2, ... (5.55)

n∑
k=1

∞∑
j=0

xj,kε
2j+1
k

2j +1
= 0. (5.56)

If yj,k is the solution of the system590

∞∑
j=0

yj,k

2j +1
= 1,

591
∞∑

j=0

yj,k

2j −2m+1
= 0 for k =1,2, ..., n, m=1,2, ...

592

then593

xj,k = δi,k −C

4 log εk

yj,k

(
1+O

(
1

log εk

))
594
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and Eq. (5.56) gives595

C ∼

1
log εi

∞∑
j=0

yj,iε
2j+1
i

2j +1

n∑
k=1

1
log εk

∞∑
j=0

yj,kε
2j+1
k

2j +1

.

596

Note that597

n∑
k=1

∫ sk+εk

sk−εk

vS(x(s), y(s); ξ, η)g(s) ds =O(ε)

598

in the representation formula (5.49). It follows that the exit probability599
through arc i is600

u(ξ, η)∼

1
log εi

∞∑
j=0

yj,iε
2j+1
i

2j +1

∑n

k=1

1
log εk

∞∑
j=0

yj,kε
2j+1
k

2j +1

. (5.57)

601

If all εk are equal, Eq. (5.57) reduces to the obvious result602

u(ξ, η)= 1
n
.603

The above equations can be solved explicitly for a disk. When the series604
are truncated at 10 terms, we obtain the probability of escape at arc i as605

Ci ∼
εiy0,i

ln εi∑n

k=1

εky0,k

ln εk

. (5.58)

606

As mentioned in Section 5, if the openings on the circles are not dis-607
tributed uniformly, the diffusion tensor of the coarse grained Brownian608
motion becomes anisotropic and the diffusion in one direction will be609
faster than in the orthogonal direction, depending on the distribution of610
exit points.611
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6. ESCAPE BEFORE ANCHORING612

When a receptor enters a PSD �, it can either be anchored for a613
certain time there by a specific protein or it can leave the PSD without614
binding. In this section, we calculate the probability of such an event. We615
formulate the problem for a general domain and give an explicit compu-616
tation for a planar disk.617

We model the anchoring of the receptor as the termination of its618
trajectory. Termination of diffusing trajectories introduces a killing mea-619
sure.(14) In the presence of a killing measure k(x) the transition probability620
density of a trajectory, p(x, t |y) is in fact the probability density to reach621
the point x at time t without being killed or absorbed. It satisfies the ini-622
tial-boundary value problem.(14)623

∂p(x, t |y)

∂t
= −∇x ·J (x, t |y)−k(x)p(x, t |y) for x,y ∈�, (6.59)624

p(x, t |y) = 0 for x ∈ ∂�a y ∈�,625
∂p(x, t |y)

∂n(x)
= 0 for x ∈ ∂�r, y ∈�, (6.60)

626
p(x,0 |y) = δ(x −y) for x,y ∈�, (6.61)627

where the probability flux density vector is given by628

J (x, t |y)=−D∇xp(x, t |y),629

and ∂�r is the reflecting part of the boundary and ∂�a the absorbing630
part. For a general domain binding proteins are spread over a subdo-631
main �p ⊂ �. We denote by T the time to killing and by τ the time to632
leave through ∂�a . The probability of a trajectory that starts at y to leave633
before being killed is the total flux through the absorbing boundary,634

Pr{τ <T |y}=
∫ ∞

0

∫
∂�a

J (x, t |y) ·n(x) dSx dt. (6.62)
635

Integrating Eq. (6.59) with respect to x and t and using the boundary and636
initial conditions (6.60) and (6.61), we obtain from (6.62) the representa-637
tion638

Pr{τ <T |y}=1−
∫

�

k(x)G(x |y) dx, (6.63)
639
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where640

G(x |y)=
∫ ∞

0
p(x, t |y) dt.

641

Integrating Eq. (6.59) only with respect to t , we see that the function
G(x |y) is the solution of the boundary value problem

D�xG(x |y)−k(x)G(x |y) = −δ(x −y), (6.64)
∂G(x |y)

∂n(x)
= 0 for x ∈ ∂�r, y ∈�,

G(x |y) = 0 for x ∈ ∂�a, y ∈�.

That is, G(x |y) is Green’s function for the inhomogeneous problem642

D�xu(x)−k(x)u(x) = −f (x),643
∂u(x)

∂n(x)
= 0 for x ∈ ∂�r,644

u(x) = 0 for x ∈ ∂�a,645

where f (x) is any square integrable function. It follows that Eq. (6.63) can646
be rewritten in terms of Green’s function as647

Pr{T <τ |y}=
∫

�

k(x)G(x |y) dx.
648

The chance to leave before being anchored is found by integrating the con-
ditional probability with respect to the initial uniform distribution of y ∈
�. By definition,

Pr{T <τ }= 1
|�|

∫
�

Pr{T <τ |y}dy = 1
|�|

∫
�

k(x)

∫
�

G(x |y) dy dx. (6.65)

The function649

u(x)=
∫

�

G(x |y) dy,
650

is the solution of the boundary value problem

D�u(x)−k(x)u(x) = −1 for x ∈�, (6.66)

u(x) = 0 for x ∈ ∂�a,

∂u(x)

∂n
= 0 for x ∈ ∂�r (6.67)
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and

Pr{T <τ }= 1
|�|

∫
�

k(x)u(x) dx. (6.68)

To find the asymptotic expansion of Pr{T <τ } for a small opening, we651
proceed as above. We compute u(x) from the Neumann function, which is652
the solution of653

D�N(x |y)−k(x)N(x |y) = −δ(x −y) for x �=y ∈�,654
(6.69)655

∂N(x |y)

∂n(x)
= 0 for x ∈ ∂�, y ∈�.

656

From Green’s formula, we obtain657

u(y)=
∫

∂�a

N(x |y)
∂u(x)

∂n(x)
dSx +

∫
�

N(x |y) dx. (6.70)
658

Now

Pr{T <τ } = 1
|�|

∫
�

k(y)u(y) dy

= 1
|�|

∫
�

k(y)

{∫
∂�a

N(x |y)
∂u(x)

∂n(x)
dSx +

∫
�

N(x |y) dx

}
dy

= 1
|�|

∫
�

k(y)

∫
∂�a

N(x |y)
∂u(x)

∂n(x)
dSx dy +1, (6.71)

so that659

Pr{τ <T }=− 1
|�|

∫
�

k(y)

∫
∂�a

N(x |y)g(x) dSx dy, (6.72)
660

where only the function g(x)=∂u(x)/∂n(x) is not known explicitly. It can661
be, however, recovered by using the absorbing boundary condition662

u(y)=0 for y ∈ ∂�a.663

We obtain664 ∫
∂�a

N(x |y)g(x) dSx +
∫

�

N(x |y) dx =0 for y ∈ ∂�a. (6.73)
665
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The singularity of Neumann’s function for a planar domain is logarithmic,666
that is,667

N(x |y)=− 1
2π

log |x −y|+vS(x,y) for x,y ∈�, (6.74)668

where vS(x,y) is the regular function.669
For a planar domain � we use the parametrization of the boundary670

by arclength (x(s), y(s)). We assume, as above, that |∂�a|/|∂�r | = ε � 1.671
In the case of a unique opening located symmetrically around a point672
x0 ∈∂�a , the function g can be approximated using condition (6.73) and a673
Taylor expansion. We write (6.73) at the boundary point y = (x(s′), y(s′))674
as675

− 1
2π

∫ ε

−ε

log(s − s′)2
(

g(0)+ g′′(0)

2
s2 +· · ·

)
ds

676
(6.75)677

=−
∫

�

N(x | (x(s′), y(s′)) dx.
678

The first-order term is679

g(0)=
π

∫
�

N(x |x(0), y(0)) dx

2ε log ε
. (6.76)

680

In general, all derivatives g(k)(0) in identity (6.75) can be computed. An681
infinite system of equations has to be solved, in a similar way as it is done682
in Appendix II. Here, using (6.76) in Eq. (6.72) and writing683

ε log ε Pr{τ <T }=F(ε), (6.77)684

we find that F(0)=F ′(0)=0, F ′′(0) �=0. It follows that for ε �1685

Pr{τ <T }=O

(
ε

log ε

)
. (6.78)

686

More precisely, using only the leading order term in the expansion of687
Pr{τ <T } for small ε,688

Pr{τ <T }=−
∫ ε

−ε

1
|�|

∫
�

k(x)N(x |y(s))g(s) ds dx,
689
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and using g′(0)=0, we obtain690

∂2 Pr{τ <T }
∂ε2

|ε=0 =− 1
|�|

∫
�

k(x)
∂N(x |y(s))

∂s

∣∣∣∣
s=0

g(0) dx. (6.79)
691

Thus the leading order term is692

Pr{τ <T } = − π

2|�|
(∫

�

k(x)
∂N(x |y(s))

∂s

∣∣∣∣
s=0

dx

)
693

×
(∫

�

N(x |y(0)) dx

)
ε

log ε
+o

(
ε

log ε

)
.

694

7. CONCLUSION AND BIOLOGICAL IMPLICATIONS695

The mathematical problem considered here is that of the exit of a696
Brownian motion from a bounded planar domain �, whose boundary is697
reflecting, except for a small absorbing arc ∂�a . Setting ε=|∂�a|/|∂�|, we698
found that the confinement time of the Brownian particle in the domain is699

O

(
log

1
ε

)
700

for ε �1. If there is an anchor in �, that can terminate the trajectory of701
the Brownian motion with a given killing rate, we found that the proba-702
bility of reaching ∂�a is703

O

(
log

ε

log ε

)
704

for ε �1.705
The biological consequence of these results is to derive a coarse706

grained diffusion constant and to estimate the mean time for a receptor,707
such as AMPA, to be fixed in the PSD, after it’s lateral insertion in the708
post-synaptic membrane. Under the assumption that the motion of the709
receptor in the complex environment of the synapse surface is Brownian,710
our computation shows that the mean time to anchoring is of the order711
of several minutes, not seconds. This estimate is relevant in the context712
of receptor trafficking, induced by LTP: the number of activated AMPA713
receptors increases during LTP (see the recent review ref. 8). The increase714
in the number of activated receptors can occur in about a minute. We may715
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surmise that if the bigger current response after LTP is due to the inser-716
tion of new receptors, not to the activation of already anchored receptors,717
then some AMPA receptors must already be present extra-synaptically on718
the synapse’s membrane, so they won’t have to diffuse all the way from the719
point of insertion to their final destination. Thus extrasynaptic receptors720
may serve the role of a reserve pool.721

Under standard conditions, when no LTP is induced, the floating722
receptors should not be able to enter the PSD, to avoid significant fluc-723
tuations in the synaptic weight. In reality, however, there is evidence that724
receptors traffick in and out of synapses even in the absence of synap-725
tic activity. The concentration of synaptic receptors is maintained constant726
by a hitherto unknown mechanism that has to be elucidated. A possible727
explanation may be that LTP induction induces disruptions, of size ε, say,728
in the boundaries of corrals of. This would allow receptors to enter. Such729
a prediction is based on the fact that AMPA receptors cannot both be730
inserted and reach the PSD in a minute. They should be already there and731
ready to move inside the PSD domain.732

The lifetime of an AMPA receptor is of the order of 24 h, while the733
lifetime of a synapse is of the order of years, so a regulation mechanism,734
called the turnover of receptors, is necessary to maintain the number of735
receptors, and thus to maintain the synaptic weight.(7,8) Corrals can allow736
receptors to move inside the PSD domain, and thus allow the turnover by,737
intermittent disruptions of their barriers. It is also not clear how the mem-738
brane disruption occurs in the absence of any LTP induction. In partic-739
ular, it is not known if new receptors, induced by LTP, follow the same740
pathway as the turnover receptors. It is well known that the forming of741
AMPA receptors is aided by different transmembrane subunits, GluR1 to742
GluR4, that could also play a key role in routing the receptors. If this is743
so, one would expect that specific proteins allow turnover receptors to pen-744
etrate the corral barrier, so they don’t have to wait for any disruptions,745
induced under specific conditions only.746

Another possible scenario in trafficking is that AMPA receptors are747
waiting extra-synaptically for the disruption of a corral barrier to facili-748
tate their diffusion across sub-domains. It is unclear, however, what pro-749
duces these disruptions. In vivo, the mean electrical activity of neurons750
can control trafficking for the following reason. It has been demonstrated751
recently(24) that at every synapse, the total number of AMPA receptors752
can be scaled with the activity: the total number of receptors increases at753
all synapses when the mean spontaneous activity decreases, but the num-754
ber of receptors decreases at synapses when the mean spontaneous activity755
increases.756
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In molecular terms this means that when calcium enters a synapse,757
extrasynaptic AMPA receptors are slowed down, or altogether stopped.(9)758
It is then conceivable that spontaneous activity regulates AMPA receptor759
trafficking to the PSD by regulating calcium dynamics, and trafficking760
regulation is responsible for the scaling property reported in ref. 24. If761
so, the role of the spontaneous activity would be to allow the turnover762
of receptors and thus cause also the scaling of the synaptic weight by763
the mean electrical activity. The precise molecular pathways for such764
regulation have yet to be determined. In any case, when the mean activity765
decreases, less calcium enters the synapse, and if calcium can for exam-766
ple depolymerize actin molecules and create corral disruption, then by767
decreasing the mean activity, less polymerization occurs and less corral768
zones are open, on the average. This would educe the probability that769
receptors move to the PSD. Under this scenario, spontaneous activity is770
necessary for receptors to diffuse to the PSD. New models are necessary771
to describe the regulation between trafficking and spontaneous activity.772
Finally, further experiments should reveal if after LTP, AMPA receptors773
indeed move away from their extra-synaptic positions to the PSD. They774
should also clarify the role of extra-synaptic receptors in synaptic plasticity.775

776
Acronyms identification777

• GABA ( [γ ] -aminobutyric acid),778

• GABAr=GABA receptor,779

• AMPA( [α] -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid),780

• AMPAr=AMPA receptor,781

• NMDA (N -methyl-d-aspartate),782

• NMDAr=NMDA receptors,783

• GRIP, glutamate-receptor-interacting protein (scaffolding proteins),784

• PICK, protein that interacts with C kinase (scaffolding proteins),785

• mGluRs metabotropic glutamate receptors (mGluRs),786

• PSD Postsynaptic densities.787

APPENDIX I: FROM A MIXED BOUNDARY VALUE PROBLEM788
TO THE NEUMANN PROBLEM789

The asymptotic analysis of the confinement time depends on the rep-
resentation of the solution of a mixed boundary value problem in terms of
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the Neumann function. The representation is defined as follow. Consider
the unique solution uf,g of the mixed Neumann–Dirichlet boundary value
problem

�u(x) = 0 for x ∈�,

∂u(x)

∂n
= f (x) for x ∈ ∂�r, (8.80)

u(x) = g(x) for x ∈ ∂�a,

where f, g are two given regular functions, and consider a function vg̃,g,
the solution of

�u(x) = 0 for x ∈�,

∂u(x)

∂n
= g̃ for x ∈ ∂�r, (8.81)

∂u(x)

∂n
= g for x ∈ ∂�a.

Given uf,g, there exists a unique function g̃, which is a function of (f, g),
and a constant C(g̃, g), such that

uf,g =vg̃,g +C(g̃, g). (8.82)

Moreover g̃ has to satisfy the compatibility condition

∫
∂�r

g(x) dSx +
∫

∂�a

g̃(x) dSx =0. (8.83)

This representation is used in Section 1 of this paper, where the Neumann790
function is known explicitly for some simple geometric cases.791

The Neumann function for the problem (8.80) gives the representa-792
tion793

f (y)=
∫

∂�a

N(x |y)g̃(x) dSx +
∫

∂�r

N(x |y)g(x) dSx for y ∈ ∂�a.

(8.84)794

Eq. (8.84) is and integral equation for g̃(x), given f (x) and g(x).795
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APPENDIX II: EXPLICIT COMPUTATION OF THE CONFINEMENT796
TIME IN A DISK797

In this Appendix, we provide explicit computations to determine the
leading term Cε and the zero order term of the confinement time given by
Eq. (4.35). To determine the function g (θ), as discussed in Section 1, we
expand it in Taylor’s series in the interval |θ |<ε and expand the integral
in (4.34) in powers of θ . The boundary condition (4.31) implies that the
power series has to vanish identically. Truncating the series expansion at n

terms leads to a system of n linear equations for g(0), for the derivatives
g(i)(0), (i = 1,2, . . . , n − 1), and for the unknown constant Cε. An addi-
tional equation is obtained by integrating Eq. (4.29) over the disk,

0=
∫ π

−π

∂vε (R, θ)

∂r
dθ =π − ε +

∫
|θ |<ε

g (θ) dθ. (8.85)

The absorbing boundary condition vε(R, θ)=0 implies that

∫ ε

−ε

log {2 [1− cos(θ −φ)]}
(8.86)

×
[
g (0)+ g′′ (0)

2
φ2 + g(iv) (0)

24
φ4 +· · ·+O

(
φ10

)
− 1

2

]
dφ

−2πCε

R2
=0,

where g is and even function. The integrals are estimated up to the order798
10 as follows,799

∫ ε

−ε

log {2 [1− cos(θ −φ)]} dφ
800

=−4ε +4ε ln |ε|+
(

2
ε

)
θ2 + 1

3ε3
θ4 + 2

15ε5 θ6 + 1
14ε7 θ8 + 2

45ε9
θ10+o(θ10),

801 ∫ ε

−ε

φ2 log |θ −φ|2 dφ =
(

4
3
ε3 ln ε − 4

9
ε3

)
+ (−2ε) θ2 + 1

ε
θ4 + 2

9ε3
θ6

802

+ 1
10ε5 θ8 + 2

35ε7 θ10 +o(θ10),803 ∫ ε

−ε

φ4 log |θ −φ|2 dφ =
(

− 4
25

ε5 + 4
5
ε5 ln ε

)
+

(
−2

3
ε3

)
θ2 + (−ε) θ4

804

+ 2
3ε

θ6 + 1
6ε3

θ8 + 2
25ε5 θ10 +o(θ10),805
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806 ∫ ε

−ε

φ6 log |θ −φ|2 dφ =
(

4ε7

7
ln ε − 4

49
ε7

)
+

(
−2

5
ε5

)
θ2 +

(
−1

3
ε3

)
θ4

807

+
(

−2
3
ε

)
θ6 + 1

2ε
θ8 + 2

15ε3
θ10 +o(θ10),

808 ∫ ε

−ε

φ8 log |θ −φ|2 dφ =
(

4ε9

9
ln ε − 4

81
ε9

)
+

(
−2

7
ε7

)
θ2 +

(
−1

5
ε5

)
θ4

809

+
(

−2
9
ε3

)
θ6 +

(
−1

2
ε

)
θ8 + 2

5ε
θ10 +o(θ10),

810

811

812

∫ ε

−ε

φ10 log |θ −φ|2 dφ =
(

4ε11

11
ln ε − 4

121
ε11

)
+

(
−2

9
ε9

)
θ2 +

(
−1

7
ε7

)
θ4

813

+
(
− 2

15
ε5

)
θ6 +

(
−1

6
ε3

)
θ8 +

(
−2

5
ε

)
θ10 +o(θ10).

814

We denote the unknowns of the system by815

a =g (0)− 1
2
, b= g′′ (0)

2
, c= g(iv) (0)

24
,816

d = g(6) (0)

6!
, e= g(8) (0)

8!
, f = g(10) (0)

10!
.817

Substituting the Taylor expansions into the expression (8.86), we obtain818
that819

(−4ε +4ε ln ε) a +
(

4
3
ε3 ln ε − 4

9
ε3

)
b+

(
− 4

25
ε5 + 4

5
ε5 ln ε

)
c

820

+
(

4ε7

7
ln ε − 4

49
ε7

)
d +

(
4ε9

9
ln ε − 4

81
ε9

)
e

821

+
(

4ε11

11
ln ε − 4

121
ε11

)
f = 2πCε

R2
,

822 (
2
ε

)
a + (−2ε) b+

(
−2

3
ε3

)
c+

(
−2

5
ε5

)
d +

(
−2

7
ε7

)
e+

(
−2

9
ε9

)
f =0,

823
1

3ε3
a + 1

ε
b+ (−ε) c+

(
−1

3
ε3

)
d +

(
−1

5
ε5

)
e+

(
−1

7
ε7

)
f =0,

824
2

15ε5 a + 2
9ε3

b+ 2
3ε

c+
(

−2
3
ε

)
d +

(
−2

9
ε3

)
e+

(
− 2

15
ε5

)
f =0,

825
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1
14ε7 a + 1

10ε5 b+ 1
6ε3

c+ 1
2ε

d +
(

−1
2
ε

)
e+

(
−1

6
ε3

)
f =0,

826
2

45ε9
a + 2

35ε7 b+ 2
25ε5 c+ 2

15ε3
d + 2

5ε
e+

(
−2

5
ε

)
f =0.

827

The solutions are828

g (0) = a + 1
2

= 1
2

+ πCε

εR2 (−2.211 2+3.002 2 ln ε)
,

829

b = πCε

ε3R2 (−3.980 2+5.403 9 ln ε)
,

830

c = πCε

ε5R2 (−4.643 6+6.304 6 ln ε)
,

831

d = πCε

ε7R2 (−4.643 6+6.304 6 ln ε)
,

832

e = πCε

ε9R2 (−3.980 2+5.403 9 ln ε)
,

833

f = πCε

ε11R2 (−2.211 2+3.002 2 ln ε)
.

834

Integrating Eq. (8.85), we obtain835

0=π − ε +2εg(0)+ 2ε3

3!
g′′(0)+· · ·+ 2ε11

11!
g(10)(0).836

By replacing in this expression the value of g(k)(0), we obtain that837

Cε =0.73654+ (1+O(ε)) ln
1
ε
.838

Hence Eq. (4.36).839
In the expansion840

τ̄ε =C1(�) ln
1
ε

+C2(�)+O

(
ε ln

1
ε

)
,

841

Eq. (4.25) gives an explicit expression for C2(�) in terms of the area of842
�. A similar evaluation of C2(�) in terms of geometric properties of � is843
still an open problem.844
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