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Abstract. We report here recent progress in computing the search time for a
stochastic particle to find a small target hidden in cusp-like pockets. The target is
a small segment in dimension two, a small hole or a narrow ribbon in dimension
three, placed at the end of a cusp. The asymptotic analysis of the diffusion equa-
tion reveals the role of the local geometry, and a mathematical difficulty comes
from the boundary layer near the target. The methods are conformal mapping
and matching asymptotic. We present applications in cell biology where cellular
activation occurs when a diffusing particle finds a hidden site. This is the case
during vesicular fusion initiated after a protein located between the vesicular and
cell membranes binds to several diffusing calcium ions. Another example is a drug
activation site located inside a deep molecular pocket. The analytical formulas
clarifies the role of small parameters.

1 Introduction

Finding a small hidden target by a protein, an ion or a molecule is ubiquitous in molecular and
cellular biology, and it represents a key limiting step for activation of a cellular process. For
example, proteins need to find active sites hidden in the interior of a larger molecular complex.
This is the case for the hemoglobin or the penicillin-binding proteins, and many others where
active sites are hidden inside in the complex organization of α and β−sheet structures. For the
hemoglobin, a ligand, such as β−lactam antibiotic, has to bind to a small site hidden inside
the molecule and indeed, ligand recognition requires that strands should be antiparallel in the
active site area [1]. Another example where finding a small target is relevant in cell biology is
the diffusion of molecules, RNAs or proteins between the mother and the daughter cell during
cell division [2]. The diffusion time is controlled by the arrival of Brownian particles to the
cylindrical neck connecting the two cells and it determines the amount of molecules that will be
exchanged between them. Interestingly, the mean time for a thin rod to turn in a narrow tube
or for a protein to rotate in a thin two-dimensional band is also very long and characterizes a
strand to become parallel or anti-parallel.

Contrary to freely accessible small targets, the mean time for a Brownian particle to reach
a target located at a narrow cusp is much longer. Finding asymptotic expressions for such
search times remains challenging numerically and analytically. Numerically, because it requires
very long simulations, leading to many inaccuracies, and this is not even sufficient to guess
asymptotic formulas. From an analytical point of view, the classical methods developed for the
narrow escape problems do not apply [2–4].

We report recent progress about asymptotic computation of the mean time for a Brownian
particle diffusing in a bounded domain to find a small hidden target located at a cusp geometry
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on the boundary, which otherwise reflects the particle (Fig. 1). This time is referred in the
literature as the Dire Strait Time (DST) [5,6] and differs from the classical narrow escape time
(NET), which is the time for a diffusing particle to find a small site located on a smooth part
of the boundary.

A major difference between the DST and the NET is reflected in the method for computing
asymptotically each search time. In both cases, this computation involves solving the Pois-
son equation with small Dirichlet and large Neumann parts: the NET methods are matched
asymptotic [7–9] or Green’s function [3], but these methods fail to compute the DST because
the cusp creates a new boundary layer. For the DST, the method mixes asymptotic analysis
and conformal mapping. Furthermore, the analysis in dimension three is possible when there
are symmetries that allow the analysis to two dimensions. However in both search, because they
are rare events, the probability density function of the time spent τ̄ in a compartment prior to
escape, in the limit of small target size, is dominated by a single exponential decay

pτ̄ (t) ∼ τ̄−1 exp{−t/τ̄}. (1)

The exponential rate τ̄−1 is therefore the flux into the absorbing target. This single exponen-
tial result allows coarse-graining microscopic model of reaction-diffusion into Markovian jump
processes, where the rate is the flux on the absorbing boundary equal to the reciprocal of τ̄ .
This rate encompasses the entire geometry to a single parameter, and can be used to simplify
detailed stochastic simulations of biological pathways by replacing long stochastic trajectories
with Poissonian injection rate.

Finally, the local shape of the target does matter for the search time, as revealed both by
analytical and numerical methods [10–14]. For example, an elliptic versus circular disc changes
the leading order of the search time, and the exit time to two tangent discs versus a single disc of
similar surface is different [3]. This report is organized as follows: in section 2, we present several
examples motivated by cellular biology in which computing the DST is a key to understand
the role of small targets. In section 3, we present a general classification for targets hidden in
cusps. We also discuss the case of an absorbing band at the cusp between a plane and a sphere
(Fig. 2D).

2 Examples for the search of a hidden target in cellular and molecular

biology

2.1 Mother-daughter cell

An intermediate stage during cell division consists of the asymmetric dumbbell shape (Fig. 2A)
made between the mother and daughter cells, separated by a long connecting neck that can
change over time. During this stage, some of the genetic material is transfered from the mother
to the smaller daughter cell compartment. Diffusion through the cusps connecting the neck is
the main determinant of the exchange rate and of the selection of fast diffusing particles during
this transient regime [15]. Moreover, in the absence of any active mechanism, the back flow
induced by diffusion from the daughter to the mother cell can be drastically slowed down, due
to an asymmetry in the curvature of the connecting neck between cells. Thus the transition rates
between the mother and the daughter can differ by several orders of magnitude as the geometry
at the cusp changes. This asymmetrical diffusion effect can explain some of the findings reported
experimentally in [15]: as the curvature at the connection between the cells and the neck varies
over time, it changes the diffusion fluxes, as indicated by first passage time formulas that we
shall describe below (see equation 18 and [2]). In conclusion, small asymmetric diffusion fluxes
permit to isolate the mother from the daughter cells prior to reaching steady state. Had steady
state diffusion been reached before the two cells separated, the probability density function of
diffusing particles would be uniform in the domain, and the amount of particles in both cells
would be proportional to their volumes.
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Fig. 1. Schematic description of the exit search through a cusp.

2.2 Finding a binding site in a protein: the example of hemoglobin

Active sites of complex molecules, such as hemoglobin, can be hidden inside a complex molecular
organization (Fig. 2B). To become activated, a ligand has to bind to a small site hidden inside
the molecule and indeed, ligand recognition requires that strands be well positioned in the active
site area. This phenomenon was observed for large antibiotic molecules such as the penicillin-
binding proteins [1]: the catalytic funnel reveals an elongated binding cleft, where the active
site is hidden. When the site can switch between an active and inactive state, the effective rate
constant changes drastically [2].
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Fig. 2. Schematic cusp targets in cell biology characterized by the DST. A: Model of diffusion
between the mother and daughter cell through a cusp and narrow neck. B: Search by a molecule of
a binding site, hidden in a cusp geometry. C: Rotation of a rod-like molecule in a cylindrical narrow
domain. The rotation can only occur in an extreme position, representing a cusp in the phase space. D:

The binding of several calcium ions (green) to a group of molecules located at the cusp (red) between
the docked vesicle (orange) and the neuronal membrane (blue), induces vesicular release at the pre-
synaptic terminal. E: The particular shape of the post-synaptic dendritic spine can be represented by
a bulky head connected to a thin neck. Ions entering at the PSD on the top of the head escape the
spine at the bottom of the neck.

2.3 Rotation of a needle in a confined band

A Brownian needle in a strip can model a stiff DNA fragment moving in a very confined
chromatin structure. For example, under severe stress, the DNA of the bacterium Deinococcus

radiodurans, the most radioresistant organism, undergoes a phase transition in reorganizing its
genome into tightly packed toroids, which may facilitate DNA repair [16]. Three-dimensional
analyses [17] reveal a complex network of double membranes that engulf the condensed DNA,
suggesting that two-dimensional domains lying between parallel walls may play a significant
role in DNA repair. The role of the distance between the parallel walls can be evaluated in the
computation of the mean time for a needle to rotate in such environment (see equation 15). A
similar example is a planar strip or a three dimensional cylinder: when a needle is only slightly
shorter than the strip width, its turning around becomes a rare event, because there is not
much room in the configuration space for the vertical position (Fig. 2C). Thus the computation
of the mean time to turn around becomes a Dire Strait problem [3], which does not fall under
the previously studied NET in planar geometry [3,7–9,13,18–20].

2.4 Cusp activation between a vesicle and the pre-synaptic membrane of a neuron

Another illustration of cusp geometry that controls cellular processes from the molecular level
is calcium diffusion near a vesicle located in the pre-synaptic terminal. Indeed calcium diffusion
determines the probability of vesicular release (Fig. 2D), which should depend on the distance
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between the initial calcium entrance at channels and the docked vesicle position. Specifically,
after ions enter the pre-synaptic terminal through calcium channels, they have to bind to specific
proteins located at the junction between the vesicle and the membrane that we shall modeled
here as a ribbon (red in Fig. 2D). Interestingly, the probability of vesicular release can vary over
6 order of magnitude for the same synapse, a phenomenon that is still not clearly understood
[21,22]. The particular cusp geometry formed by the vesicle and the pre-synaptic membrane
might be a key to resolve this drastic probability modulation [23].

3 Classification of the NET and DST in dimension two and three

3.1 Stochastic equation

A Brownian particle escapes through a narrow cusp located on the surface of a bounded domain
Ω (see the example in Fig. 1). The motion is described by the stochastic equation

Ẋ = b(X) +
√
2Dẇ (2)

where b is the drift, D is the diffusion coefficient and ẇ is white noise. We will consider b = 0
(for non-zero drift, new Non-Poissonian escape rates have recently been discussed in [24]). The
DST τ̄(x) for a particle starting at position x is the solution of [25]

D∆τ̄(x) = −1 for x ∈ Ω

∂τ̄

∂n
(x) = 0 for x ∈ ∂Ω \ ∂Ωa (3)

τ̄(x) = 0 for x ∈ ∂Ωa,

where ∂Ω (resp. ∂Ωa) is the boundary (resp. the absorbing part of the boundary).

3.2 Dire strait formula in dimension 2

We now summarize classical results about the NET and DST from a domain Ω in the plane,
for a small absorbing arc ∂Ωa of length a of the boundary ∂Ω. The ratio between the arclength
of the absorbing boundary and the arclength of the entire boundary is a small parameter

ε =
|∂Ωa|
|∂Ω| =

a

|∂Ω| ≪ 1. (4)

When ∂Ωa is a sub-arc of a smooth boundary, the first order in ε of the NET from any
point x in Ω to ∂Ωa, denoted by τ̄x→∂Ωa

, is independent of x outside a small vicinity of ∂Ωa

(called a boundary layer), and we have

τ̄x→∂Ωa
=

|Ω|
πD ln

1

ε
+O(1), (5)

where O(1) depends on the initial distribution of x [8,20]. In particular, if Ω is a disc of radius
R, then for x at the center of the disc,

τ̄x→∂Ωa
=

R2

D

[

ln
πR

a
+ 2 ln 2 +

1

4
+O(ε)

]

, (6)

and averaging with respect to a uniform distribution of x in the disc [3]

τ̄ =
R2

D

[

ln
πR

a
+ 2 ln 2 +

1

8
+O(ε)

]

. (7)
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Fig. 3. Classification of cusp targets. Target tangent A, perpendicular B and at the end C of a
cusp. Changing the order of approximation of the cusp D.

Formula 5 indicates that the flux through a hole in a smooth wall on a flat membrane surface
(e.g., a corral) is regulated by the following parameters: the area |Ω|, the diffusion coefficient
D, and the aspect ratio ε (equation 4). This asymptotic formula can be used to estimate the
residence time of a receptor inside the post-synaptic density, a main factor governing short-term
synaptic plasticity [2].
For a Brownian motion on a sphere of radius R, described in the spherical coordinates (θ, φ)
where (x, y, z) = (R sin θ cosφ,R sin θ sinφ,R cos θ), the NET to an absorbing circle centered at
the north-south axis (θ = 0) near the south pole with a radius a = R sin δ/2 ≪ 1, is given by

τ̄x→∂Ωa
=

2R2

D ln
sin θ

2

sin δ
2

, (8)

where δ ≤ θ ≤ π [2]. Formula 8 can be used to estimate the rate of accumulation at one pole
of proteins moving on the membrane surface during embryo development [26] .
When the absorbing window in a plane is no longer on a smooth surface, but located at a corner
of angle α, then ([3])

τ̄x→∂Ωa
=

|Ω|
Dα

[

ln
1

ε
+O(1)

]

. (9)

Formula 9 indicates that control of flux is regulated also by the access to the absorbing window
afforded by the the angle of the corner leading to the window.
If the absorbing window is located at a cusp, then τ̄x→∂Ωa

grows algebraically, rather than
logarithmically. In the domain bounded by two tangent circles (Fig. 3A), the lifetime is

τ̄x→∂Ωa
=

|Ω|
(d−1 − 1)D

(

1

ε
+O(1)

)

, (10)
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where d < 1 is the ratio of the radii [3]. Formula 10 indicates that a drastic reduction of flux can
be achieved by putting an obstacle that limits the access to the absorbing window by forming
a cusp-like passage. In addition, when ∂Ωa is located at the end of a narrow neck with radius
of curvature Rc (Fig. 3C-D), the DST is given in [2,27] as

τ̄x→∂Ωa
=

π|Ω|
2D

√

a/Rc

(1 + o(1)) for a ≪ |∂Ω|. (11)

Formula 11 can be used to estimate the effective diffusion coefficient from a model of disk
obstacles located on a lattice [2,27].

The DST can also be computed on a surface of revolution generated by rotating a curve
around an axis of symmetry. For example, the rotation of the curve in Fig. 3C around its axis of
symmetry leads to a three dimensional domain similar to Ω in Fig. 1. We use the representation
of the generating curve

y = r(x), 0 < x < Λ

where the x-axis is horizontal with x = Λ at the absorbing end AB. We assume that the parts
of the curve that generate the funnel have the form

r(x) = O(
√

|x|) near x = 0

r(x) = a+
(x− Λ)1+ν

ν(1 + ν)ℓν
(1 + o(1)) for ν > 0 near x = Λ, (12)

where a = 1

2
AB is the radius of the gap, and the constant ℓ has dimension of length. For

ν = 1 the parameter ℓ is the radius of curvature Rc at x = Λ. The DST from the head to the
absorbing end AB is given by the following algebraic decay [6]

τ̄x→∂Ωa
∼ S(Λ)

2D

(

ℓ

(1 + ν)a

)ν/(1+ν)

ν1/(1+ν)

sin
νπ

1 + ν

, (13)

where S is the entire unscaled area of the surface. In particular, for ν = 1 the DST 13 reduces
to

τ̄x→∂Ωa
∼ S

4D
√

a/2ℓ
. (14)

The case ν = 0 corresponds to a conical funnel with an absorbing circle of small radius a (see
[6]). For a sphere, equation 14 reduces to 8. Formulas 11–14 indicate that an efficient control of
the flux can be achieved by putting the absorbing window at the end of a narrow symmetric or
asymmetric funnel. This type of funnel can be formed by crowding obstacles on the membrane
surface [27], which results in an effective coarse-grained diffusion coefficient on the surface, dif-
ferent from the microscopic diffusion coefficient. Finding the NET in the flat plane when the
cusp locally behaves like y(x) = Axα + o(xα+1) with α > 2 remains an open problem (see
Fig. 3C-D).
The turning around of a needle of length l confined to a planar strip which is only slightly
wider (length l0) than the length of the neck can be reduced to a two-dimensional DST prob-
lem through a funnel (see Fig. 2C and subsection 2.3 for a specific description of biological
motivations). The DST for the needle to turn 180◦ is given by [3]

τ̄ =
π(π/2− 1)

Drl0
√
ε

√

DX

Dr

(

1 +O(
√
ε)
)

. (15)

where ε =
l0 − l

l0
≪ 1, DX is the longitudinal diffusion constant along the axis of the needle

and Dr the rotational constant (see [28–30] for a specific description of the Brownian motion
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of anisotropic objects such as a needle in two dimensions). Formula 15 shows that when the
free space between two planes decreases, the effective diffusion constant, proportional to the
reciprocal of τ̄ , experiences a second order phase transition characterized by a discontinuity of
the derivative of the effective diffusion constant for the rotation. When the length l reaches and
exceeds the critical value l0, the diffusion constant vanishes. This result explains the crucial
role of the chromatin organization in maintaining the genome integrity after radiation.
Another illustration of the DST can be found in the problem of diffusion escape from a dendritic
spine membrane, or from cell during its division. Dendritic spines can be modeled as domains
with a bulky head connected to an essentially one-dimensional strip (or cylinder) of small radius
a and length L (Fig. 2E). The connection of the head (Ω1) to the neck (Ω2) can form either an
angle or a smooth funnel. The boundary of the domain reflects Brownian trajectories and only
the end of the cylinder ∂Ωa absorbs them. In the three-dimensional case the Dirichlet boundary
∂Ωa is a small absorbing disc at the end of the cylinder. The domain Ω1 is connected to the
cylinder at an interface ∂Ωi, which in this case is a circle. It was shown in [6] that the DST
from x ∈ Ω1 to ∂Ωa is given by

τ̄x→∂Ωa
= τ̄x→∂Ωi

+
L2

2D +
|Ω1|L
|∂Ωa|D

. (16)

Formula 16 shows the role of the narrow neck in the diffusion flux regulation.

3.3 Dire strait formula in dimension 3

We recall now some known mean time asymptotic expressions for the NET in a three-dimensional
domain Ω when the target is a circular absorbing window ∂Ωa of radius a centered at 0 on the
boundary ∂Ω. It is given by [3]

τ̄x→∂Ωa
=

|Ω|
4aD

[

1− L(0) +N(0)

2π
a ln a+O(a)

]

, (17)

where L(0) and N(0) are the principal curvatures of the surface boundary at the center of
the absorbing boundary ∂Ωa. The third order asymptotic expansion can be found on a sphere
[31]. This formula is contrast with the DST asymptotics obtained for a target hidden in a three
dimensional cusp. When the target is a small absorbing window ∂Ωa of radius a located at the
end of a funnel (Fig. 1), the asymptotics is

τ̄x→∂Ωa
=

(

R

a

)3/2 |Ω|
RD (1 + o(1)) for a ≪ R, (18)

where the R is the radius of curvature of the rotated curve at the end of the funnel [6]. This
formula corrects by a factor 1/2 the previous one reported in [2,6]. The dependency in the
radius of curvature at the cusp explains how geometry controls the diffusion flux from the
mother to the daughter cell, as explained above in subsection 2.1. This asymptotics can also be
used to estimate the search time for a hidden target inside a molecule (see subsection 2.2)
Finally, the last asymptotic formula we shall present has application to estimate the probability
of vesicular release at synapse for a model of calcium diffusion. The cusp-like geometry between
a sphere and a surface (subsection 2.4 and [23] and Fig. 2D). The two-dimensional projection
near the cusp is represented in Fig. 3B. The DST a three-dimensional cusp, located at the end
of a funnel when the absorbing cross section is perpendicular to the cusp is given by

τ̄x→∂Ωa
=

|Ω|
4πDa

+O(1). (19)

The absorbing boundary forms a small ribbon of height a with surface Srib =
√

2 R1R2

|R2−R1|
a3/2

where R1 and R2 are the radii of curvature at the cusp. This result is presented below in
subsection 3.5.
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3.4 Derivation of the DST for a three-dimensional cusp located at the end of a funnel

We now present the main steps to compute the DST (formula 18) for a target located at the
end of a cusp (Fig. 1). We use a conformal mapping to map the domain Ω that contains a
small absorbing window ∂Ωa of diameter a located at the end of the funnel, which is connected
smoothly to a three dimensional ball. The radius of curvature at the funnel is R and the diffusion
coefficient is D. The symmetric cusp can be parameterized in cylindrical coordinates (ρ, z) (ρ
is the distance to the 0z axis) by

ρ(z) =
1

R
z2 +

a

2
, (20)

for z small. In dimensionless variables x = Rx′, τ̄(x) = u(x′), the domain Ω is mapped on
Ωdless, ∂Ωa into ∂Ωdless,a and |Ω| = R3|Ωdless|, a = Rǫ, D = R2D. The DST equation 4
becomes:

D∆u(x′) = −1 for x
′ ∈ Ωdless (21)

∂u

∂n
(x′) = 0 for x

′ ∈ ∂Ωdless \ ∂Ωdless,a

u(x′) = 0 for x
′ ∈ ∂Ωdless,a,

In cylindrical coordinates (ρ, ψ, z), due to symmetry, the equation reduces to

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+
∂2u

∂z2
= − 1

D
for (ρ, z) ∈ Ωdless (22)

∂u

∂n
(ρ, z) = 0 for (ρ, z) ∈ ∂Ωdless \ ∂Ωdless,a

u(ρ, z) = 0 for (ρ, z) ∈ ∂Ωdless,a.

Using Mobius mapping

f(ξ) =
ξ − αǫ

ξ + αǫ
, (23)

where ξ = ρ+ iz, we map the two-dimensional domain Ω2D = Ωdless ∩{ψ = 0} into Γ (Fig. 4),

where αǫ =
√

ǫ (1 + ǫ/4). The domain Ω2D is thus mapped into two concentric circles, and the
absorbing part of the boundary ∂Ω2D,a into the segment ∂Γa = [−1;−1 +

√
ǫ] of length

√
ǫ.

The cusp is mapped on a narrow hot-dog shaped domain, and the other part of the domain
is mapped on a small region, located at angle O(

√
ǫ) (Fig. 4). Equation 22 becomes in polar

coordinates ω = r eiθ = f(ξ) with v(r, θ) = u(f−1(ω)),

|1− ω|4
4α2

ǫ

∆v +
|1− ω|2

αǫ(1− |ω|2)

[

∂v

∂r

∂r

∂ρ
+
∂v

∂θ

∂θ

∂ρ

]

= − 1

D
for (r, θ) ∈ Γ. (24)

To solve equation 24 in Γ , we proceed as in [27] and neglect the variation in the r-variable,
because r = 1 + O(

√
ǫ) and thus v(r, θ) ≈ v(θ) with absorbing boundary condition at π

(v(π) = 0) and a boundary reflection is imposed on the upper part (v′(c
√
ǫ) = 0), where the

constant c = O(1). We find

v′′(θ) +
sin(θ)

cos(θ)− 1
v′(θ) = − α2

ǫ

D(cos(θ)− 1)2
. (25)

which is solved as [23]

v(θ) =
|Ωdless|
Dπǫ

√
ǫ
(sin(θ) + π − θ) +

α2
ǫ

15D

[

2 ln

(

1− cos(θ)

2

)

− 2 (1 + cos(θ)) +
3

cos(θ)− 1
− 3

2

]

,(26)
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Fig. 4. Mapped Domain. The two-dimensional projection Ω2D of domain Ωdless (dimensionless
domain coming from Ω, Fig. 1) is mapped through the Mobius function f(ξ) = ξ−αǫ

ξ+αǫ
into Γ .

where α2
ǫ = O(ǫ). Thus, the mean first passage time τ̄x→∂Ωa

from a point x inside the domain
Ω located outside of the cusp to the absorbing target is obtained by placing the initial point at
the angle θ = c

√
ǫ in equation 26. We obtain

τ̄x→∂Ωa
=

|Ω|
√
R

Da
√
a

+O(1), (27)

where R is the curvature at the cusp, D is the diffusion coefficient and |Ω| is the total volume of
the domain. This formula corrects by a factor 2 the asymptotic expansion for the DST derived
in [2,3,6].

3.5 Dire strait to a ribbon

To model the probability and the mean time for an ion to find a small target located between
a membrane and a vesicle (Fig. 2D and subsections 2.4 and 3.4), we approximate the local
geometry by two tangent balls of radii R1 and R2 (R1 << R2). We summarize here recent
progress on computing the escape time for a Brownian particle to a small ribbon, which consists
of a cylinder with small height a << 1, located between the two spheres (see Fig. 2D and Fig. 3B
for two-dimensional projection). In that context, the classical narrow escape results presented
in the above sections do not apply. Using the symmetry of the domain, the analysis can be
reduced to two-dimensions. In projection, the absorbing ribbon consists of a segment (∂Ωa)
joining the two discs (see Fig. 3B). Eq. 4 in cylindrical coordinates (r, z) becomes

∂2τ̄

∂r2
(r, z) +

1

r

∂τ̄

∂r
(r, z) +

∂2τ̄

∂z2
(r, z) = − 1

D for (r, z) ∈ Ω (28)

∂τ̄

∂n
(r, z) = 0 for (r, z) ∈ ∂Ω \ ∂Ωa

τ̄(r, z) = 0 for (r, z) ∈ ∂Ωa.

It is possible to obtain an analytical solution using the inversion mapping ω = f(ξ) = 1/ξ
where ξ = r + iz [23],

τ̄(r, z) =
|Ω|

4πDa

(

1− 2Ra

(

r

r2 + z2

)2
)

, (29)
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where R =
R1R2

R2 −R1

. The DST is the mean first passage time τ̄x→∂Ωa
estimated for r = 0 in

equation 29:

τ̄x→∂Ωa
=

|Ω|
4πDa

+O(1). (30)

This result is quite surprising: the leading order term does not depend on the curvature at the
cusp and diverges like 1

a , which is the divergence behavior obtained for a small circular hole.

However, the difference is the surface of the ribbon equals to Srib(a) =
√
2Ra3/2.

4 Conclusion

We have summarized here results about the DST, which is the search time by a Brownian
particle of a small target hidden in a cusp. These analytical formulas reveal the role of the local
geometrical structure at a molecular level, and show yhe role of small parameters in controlling
diffusion fluxes.

The computation of the DST for cusps of arbitrary shapes remains difficult and very few
results exist so far. The presented formulas can be extended in some cases when a drift term is
added [24], but in most cases it remains open. The drift term can account for both passive hy-
drodynamics flow or active transport, such as cargos transported by motors along microtubules.
It can also represent the statistical transport driven by electro-diffusion forces.
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