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Abstract
100 years after Smoluchowski introduces his approach to stochastic processes, 
they are now at the basis of mathematical and physical modeling in cellular 
biology: they are used for example to analyse and to extract features from 
large number (tens of thousands) of single molecular trajectories or to study 
the diffusive motion of molecules, proteins or receptors. Stochastic modeling 
is a new step in large data analysis that serves extracting cell biology concepts. 
We review here the Smoluchowski’s approach to stochastic processes and 
provide several applications for coarse-graining diffusion, studying polymer 
models for understanding nuclear organization and finally, we discuss the 
stochastic jump dynamics of telomeres across cell division and stochastic 
gene regulation.

Keywords: stochastic processes, biophysics, barrow escape, first passage 
time, polymer looping, stochatic gene activation, telomere modeling

(Some figures may appear in colour only in the online journal)

1.  Introduction

Stochastic processes have become the cornerstone of mathematical and physical modeling in 
cellular biology. Their role is to simulate and predict measurable cellular biology phenomena 
from molecular level physics. The early theory began with Einstein’s early work on the Brownian 
motion in configuration space [1], which was extended by Langevin [2] to the stochastic 
description of Brownian motion in phase space. A major advancement was Smoluchowski’s 
observation [3] that in the overdamped regime of Langevin’s phase space-model, displace-
ment and velocity become statistically independent and thus the analysis of the Langevin 
model reduces to that of displacement in configuration space alone, while velocities remain 
Maxwellian. This reduction made the use of the Fokker–Planck–Smoluchowski–Kolmogorov 
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partial differential equations  the main tool for extracting probabilistic and thus physical 
and chemical information from molecular models. In particular, the solution of boundary 
value problems for these partial differential equations clarified the significance of the mean 
escape time of a Smoluchowski configuration-space trajectory from the domain of attraction 
of a stable attractor, such as the escape over a potential barrier, called thermal activation. 
Chandrasekhar’s 1943 paper [11] reviews the early period of stochastic models in different 
branches of physics, chemistry and astronomy. In particular, it reviews Kramers’ theory [12] 
of thermal activation over a potential barrier and his development of an asymptotic method for 
the approximation of the solution of singular perturbation problems for the Fokker–Planck–
Smoluchowski partial differential equation. Kramers’ theory was developed further in the 
1950s–2000s and applied in many physical, chemical, and engineering problems, such as 
impurity diffusion in crystals, the transitions between super-conducting and conducting states 
of the driven Josephson junction, loss of lock in tracking loops, and other non-equilibrium 
processes [16, 18].

In the early 1970s a new direction has emerged. Merton, Black, and Scholes developed a 
Smoluchowski-type stochastic model for the market value of stock and used it to predict the 
value of a future contract on the stock, given its current market value (stock option pricing the-
ory), for which they were awarded the 1997 Nobel Prize in economics. Since the publication 
of their paper in 1973 the market of stock derivatives exploded and the value of traded deriva-
tives became significantly bigger than all commodities put together, including real estate in 
downtown Tokyo.

Following the work of Einstein, Langevin, and Smoluchowski a partial differential equa-
tion was derived by Fokker in 1914 (for a linear model) and in 1917 by Planck for the gen-
eral Langevin equation (see [11, 18] for references). The rigorous mathematical treatment of 
the relationship between Langevin trajectories and partial differential equations began in the 
1930s with the formalism of Kolmogorov and Wiener, who put it into abstract probability 
theory. In the mathematical literature it became clear that in addition to Itô’s formulation, 
which assumed that the noise and the state are independent, there is another formulation, due 
to Stratonovich, that takes into account correlations between the state and the noise. This is 
important both in modeling and simulations. The question which form, Itô or Stratonovich, 
is correct for the given model, is answered at the microscopic level, not at the equation level 
(see discussion in [18]).

The calculation of the mean first passage time (MFPT) for noise-activated escape from the 
an attractor leads to singular perturbation problems in parabolic and elliptic partial differential 
equations. Therefore analytical approximations of the solution require asymptotic methods 
that were developed in fluid dynamics [5] and quantum mechanics [6, 7], such as boundary 
layer theory [7, 8], matched asymptotics [9], the WKB method [7, 8, 10], and more.

Molecular and cellular biophysics were relatively late comers to the world of stochastics. 
They introduced a slew of new mathematical problems in stochastics. Thus, for instance, 
Smoluchowski and Smoluchowski–Stratonovich equations  appear as approximations to 
Markovian models in the continuum limit. Deviations from the Smoluchowski–Stratonovich 
model are expressed by the introduction of a memory kernel, which may represent a coarse-
grained model of interaction of the molecular path with many degrees of freedom, such as the 
medium in which a molecule is immersed, coupling between molecules, and so on [18].

In the 1980s and 1990s, motivated by biophysical questions, modeling and simulations 
were developed to simulate and analyze the motion of ions inside protein channels of biologi-
cal membranes or across different concentrations [33, 34]. Later, in the 1990s and the 2000s, 
a new field emerged that used Smoluchowski dynamics to predict biological processes on the 
molecular level. Specifically, the accumulation of massive physiological data prompted the 
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use of stochastic models of synaptic transmission in neurobiology, of calcium dynamics in 
microdomains, the motion of ions in selective ion channels, and so. The narrow escape theory 
emerged as a generic theory to study the rare cellular events of arrival of Brownian particles 
at a small absorbing part of an impermeable membrane, which may represent any small target 
for diffusing molecules [14, 35–42, 44, 45].

Nowadays, 100 years after Smoluchowski, the field of stochastic modeling has matured 
into molecular biophysics and physiology and brought with it a plethora of new mathematical 
problems. A particularly fruitful direction is that of calculating the MFPT of a Smoluchowski 
trajectory to a small target, the so-called narrow escape problem. Obviously, the Smoluchowski 
trajectory may represent that of a molecule inside or outside a biological cell or on its mem-
brane. The target is small in the sense that its size is much smaller than that of the cell. 
Although similar to the activation problem, the narrow escape problem is radically different 
and calls for new asymptotic methods. Curiously enough, the same mathematical problem 
appears in Helmholtz’s theory of radiation through a small opening [46]. The new narrow 
escape theory (NET), which appeared initially as a new mathematical first passage time prob-
lem, is the centerpiece of this review.

2.  Construction of the Brownian trajectories

The laws of diffusion were first formulated by Fick. His first law of diffusion, formulated 
in 1856 by analogy with Fourier’s first law of heat conduction, asserts that the diffusion flux 
between two points of different concentrations in the fluid is proportional to the concentration 
gradient between these points. The constant of proportionality is called the diffusion coeffi-
cient and it is measured in units of area per unit time.

In 1905 Einstein [1] and, independently, in 1906 Smoluchowski [3] offered an explana-
tion of the Brownian motion based on kinetic theory and demonstrated, theoretically, that the 
phenomenon of diffusion is the result of Brownian motion. Einstein’s theory was later veri-
fied experimentally by Perrin [21] and Svedberg [22]. That of Smoluchowski was verified by 
Smoluchowski [4], Svedberg [23] and Westgren [24, 25]. Perrin has won the 1926 Physics 
Nobel Prize for his experiment.

They derived an explicit formula for the diffusion coefficient,

π η
=D

RT

N a

1

6
,� (1)

where R is the universal gas constant, T  =  absolute (Kelvin) temperature, and N  =  Avogadro’s 
number, a  =  radius of the particle, and η = coefficient of dynamical viscosity. Equation (1) 
was obtained from similar considerations by Sutherland in 1904 and published in 1905 [26], 
but has never received due credit for it.

To connect this theory with the ‘ irregular movement which arises from thermal molecu-
lar movement’, Einstein made the following assumptions: (1) the motion of each particle is 
independent of the others and (2) ‘the movements of one and the same particle after different 
intervals of time must be considered as mutually independent processes, so long as we think 
of these intervals of time as being chosen not too small’. He derived from these assumptions 
the diffusion equation for the density function p(x,t) of finding the Brownian particle at point 
x on the line at time t and its solution

p x t
Dt

x

Dt
,

1

4
exp

4
,

2

( )
⎧
⎨
⎩

⎫
⎬
⎭π

= −� (2)
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which can be interpreted as the transition probability density of a particle from the point x  =  0 
at time 0 to the point x at time t.

If we denote by x(t) the displacement (or trajectory) of the particle at time t, then for any 
spatial interval A,

x t A p x t xPr , d .
A

{ ( ) } ( )∫∈ =� (3)

It follows that the moments of the Brownian displacement process are

x t xp x t x x t x t Dt, d 0, 2 .2( ) ( ) ( ) ( )E E E∫= = = =� (4)

Obviously, if the particle starts at x(0)  =  x0, then

| = =

| = = − | = =

E
E

x t x x x

x t x x x t x x x Dt

0

Var 0 0 2 .
0 0

0 0
2

0

[ ( ) ( ) ]
[ ( ) ( ) ] [( ( ) ) ( ) ]

� (5)

Now, using equation (1) in equation (5), the mean square displacement of a Brownian par-
ticle along the x-axis is found as

t
kT

a3
,σ

π η
=� (6)

where k  =  R/N is Boltzmann’s constant. This formula was verified experimentally [22]. It 
indicates that the mean square displacement of a Brownian particle at times t not too short is 
proportional to the square root of time.

The mathematical question of the existence of a stochastic (random) process which satis-
fies Einstein’s requirements and of its actual construction, was answered in the affirmative in 
1933 by Paley, Wiener, and Zygmund [27], who constructed the random Brownian trajectories 
in the form of a Fourier series with random Gaussian coefficients. They proved, i.e. that the 
Brownian trajectories are nowhere differentiable with probability 1. Another, more modern 
approach, was proposed by Lévy [28]. Lévy’s construction of a Brownian path in the time 
interval [0,1] consist in refining linear interpolations of points sampled independently from 
the Gaussian distribution at binary times t k k n2 , 0, 1 ,k n

n
, ( )= = …− , such that the properties 

(4), (5) are satisfied at the binary times tk,n (see details in [18]).

3. The velocity process and Langevin’s approach

3.1. The velocity problem

Obviously, the infinite velocities of the Brownian trajectories contradict physics. Specifically, 
according to the Waterston–Maxwell equipartition theorem [20], the root mean square (RMS) 
velocity v v2¯ E=  of a suspended particle should be determined by the equation

m
v

kT

2

3

2
.2¯ =� (7)

Each component of the velocity vector has the same variance, so that

m
v

kT

2 2
,x y z, ,

2¯ =� (8)
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which is the one-dimensional version of equation  (7). The RMS velocity comes out to be 
about 8.6 cm s−1 for the particles used in Svedberg’s experiment [22]. Einstein argued in 1907 
and 1908 [1] that there is no possibility of observing this velocity, because of the very rapid 
viscous damping, which can be calculated from the Stokes formula. The velocity of such 
a particle would drop to 1/10 of its initial value in about 3.3 10 7× −  s. Therefore, Einstein 
argued, in the period τ between observations the particle must get new impulses to movement 
by some process that is the inverse of viscosity, so that it retains a velocity whose RMS aver-
age is v̄. Between consecutive observations these impulses alter the magnitude and direction 
of the velocity in an irregular manner, even in the extraordinarily short time of 3.3 10 7× −  s. 
According to this theory, the RMS velocity in the interval τ has to be inversely proportional 
to τ ; that is, it increases without limit as the time interval between observations becomes 
smaller.

3.2.  Langevin’s solution of the velocity problem

In 1908 Langevin [2] offered an alternative approach to the problem of the Brownian motion. 
He assumed that the dynamics of a free Brownian particle is governed by the frictional force 

a v6π η−  and by a fluctuational force Ξ that results from the random collisions of the Brownian 
particle with the molecules of the surrounding fluid, after the frictional force is subtracted. 
This force is random and assumes positive and negative values with equal probabilities. It fol-
lows that Newton’s second law of motion for the Brownian particle is given by

mx a x¨ 6 ˙ .π η= − + Ξ� (9)

Denoting v ẋ=  and multiplying equation (9) by x, we obtain

m

t
x mv a

t
x x

2

d

d
3

d

d
.

2

2
2 2 2π η− = − + Ξ� (10)

Averaging under the assumption that the fluctuational force Ξ and the displacement of the 
particle x are independent, we obtain

m

t
x a

t
x kT

2

d

d
3

d

d
,

2

2
2 2E Eπ η+ =� (11)

where (8) has been used. The solution is given by x t kT a Cd d 3 e a t m2 6/ / /E π η= + π η− , where C 
is a constant. The time constant in the exponent is 10 8−  sec, so the mean square speed decays on 
a time scale much shorter than that of observations. It follows that x x kT a t32

0
2 ( / )E E π η− = . 

This, in turn (see (4)), implies that the diffusion coefficient is given by D kT a6/ π η= , as in 
Einstein’s equation (1).

Langevin’s equation (9) is a stochastic differential equation, because it is driven by a ran-
dom force Ξ. If additional fields of force act on the diffusing particles (e.g. electrostatic, magn
etic, gravitational, etc), Langevin’s equation is modified to include the external force, F(x,t), 
say, [12], [11],

mx x F x t¨ ˙ , ,( )+ Γ − = Ξ� (12)

where a6π ηΓ =  is the friction coefficient of a diffusing particle. We denote the dynamical 
friction coefficient (per unit mass) m/γ = Γ . If the force can be derived from a potential, 
F U x( )= −∇ , Langevin’s equation takes the form

mx x U x¨ ˙ .( )+ Γ +∇ = Ξ� (13)
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The main mathematical difference between the two approaches is that Einstein assumes 
that the displacements ∆ are independent, whereas Langevin assumes that the random force Ξ 
and the displacement x are independent. The two theories are reconciled in section 3.3 below.

To investigate the statistical properties of the fluctuating force Ξ, Langevin made the fol-
lowing assumptions.

	 (i)	The fluctuating force Ξ is independent of the velocity v.
	(ii)	Ξ changes much faster than v.
	(iii)	 0⟨ ⟩Ξ = .
	(iv)	The accelerations imparted in disjoint time intervals t1∆  and t2∆  are independent.

These conditions define the noise t( )Ξ  (so called white noise) as the nonexistent derivative 
of Einstein’s Brownian motion X(t). The conditional probability distribution function of the 
velocity process of a Brownian particle (PDF), given that it started with velocity v0 at time 
t  =  0, is defined as P v t v v t v v, Pr0 0( ) { ( ) }| = < |  and the conditional probability density func-
tion is defined by

p v t v
P v t v

v
,

,
.0

0( )
( )

| =
∂ |
∂

In higher dimensions, we denote the displacement vector x x x x, , , d
T

1 2( )= … , the velocity  
vector x v v v v˙ , , , d

T
1 2( )= = … , the random force vector , , , d

T
1 2( )Ξ = Ξ Ξ … Ξ , the PDF

| = < < … < | =v v v vP t v t v v t v v t v, Pr , , , 0 ,d d0 1 1 2 2 0{ }( ) ( ) ( ) ( ) ( )

and the probability density function (pdf)

v v
v v

p t
P t

v v v
,

,

,
.

n

d
0

0

1 2
( )

( )
| =

∂ |
∂ ∂ …∂

The conditioning implies that the initial condition for the pdf is v v v vp t, 0 0( ) → ( )δ| −  as 
t 0→ . According to the Waterston–Maxwell theory, when the system is in thermal equilib-
rium, the velocities of free Brownian particles have the Maxwell–Boltzmann pdf; that is,

v v
v

p t
m

kT

m

kT
lim ,

2
exp

2
.

t
0

3 2 2

( )
→

/
⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎫
⎬
⎭π

| = −
| |

∞
� (14)

The solution of the Langevin equation (9) for a free Brownian particle is given by

v vt
m

s se
1

e d .t
t

t s
0

0
( ) ( )( )∫ Ξ= +γ γ− − −� (15)

The integral (15) makes sense, if it is integrated once by parts. However, if the factor multiply-
ing Ξ in (15) is non-differentiable as well, e.g. if it is x t( ), integration by parts is insufficient 
to make sense of the stochastic integral and a more sophisticated definition is needed. Such a 
definition was given by Itô in 1944 [29] (see also [18]).

To interpret the stochastic integral in the one-dimensional (15), we make a short math-

ematical digression on the definition of integrals of the type g s s sd
t

0
( ) ( )∫ Ξ , where g(s) is a 

deterministic integrable function. Such an integral is defined as the limit of finite Riemann 
sums of the form

g s s s g s s sd lim ,
t

s i
i i i

0 0i

( ) ( ) ( ) ( )
→∫ ∑Ξ = Ξ ∆

∆
� (16)
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where s s s t0 N0 1= < < < =�  is a partition of the interval [0,t]. According to the 
assumptions about Ξ, if we choose s t t Ni /∆ = ∆ =  for all i, the Gaussian incre-
ments b s si i i( )∆ = Ξ ∆  are independent identically distributed (i.i.d.) random variables. 
Einstein’s observation (see the beginning of section  3) that the RMS velocity on time 
intervals of length t∆  are inversely proportional to t∆ , implies that if the increments 
b s si i i( )= Ξ ∆  are chosen to be normally distributed, their mean must be zero and their cova-
riance matrix must be b b q ti j ij⟨ ⟩ δ∆ ∆ = ∆  with q a parameter to be determined. We write 

b q t0,i ( )∆ ∼ ∆N . Then g s s s g s q t0,i i i i
2( ) ( ) ( ( ) )Ξ ∆ ∼ | | ∆N , so that g s s s 0,i i i i N

2( ) ( ) ( )σ∑ Ξ ∆ ∼N ,  

where g s q sN i i i
2 2( )σ = ∑ | | ∆ . As t 0→∆ , we obtain q g s slim dt N

t
0

2

0
2( )→ ∫σ =∆  and ∫ Ξg s s

t

0
( ) ( )   

σ∼Nsd 0, 2( ), where

q g s sd .
t

2

0

2( )∫σ =� (17)

To interpret (15), we use (17) with g s e t s( ) ( )= γ− −  and obtain

q

2
1 e .t2 2( )σ

γ
= − γ−

� (18)

Returning to the velocity vector v t( ), we obtain from the above considerations

v v It 0e ,t
0

2( ) ( )σ− ∼γ− N� (19)

with 2σ  given by (18). Finally, the condition (14) implies that q kT m2 /γ= , so that in 3D the 
mean energy is as given in equation (7). Itô’s construction of the stochastic integral allows g(t) 
to be stochastic, but independent of the Brownian increments s s X s s X si i i i i( ) ( ) ( )Ξ ∆ = +∆ − .

In the limit →γ ∞ the acceleration v t( )γ  inherits the properties of the random acceleration 
t( )Ξ  in the sense that for different times t t 02 1> >  the accelerations v t1( )γ  and v t2( )γ  become 

independent. In fact, from equations (15) and b q t0,i ( )∆ ∼ ∆N , we find that

v vt tlim 01 2[ ( ) ( )]
→
E γ γ⋅ =

γ ∞

and a similar result for t t0 2 1< < . It follows that for t t 11 2( )γ ∧ � ,

γ γ
γ

δ⋅ = + = − +γ− | − |E v vt t
q

m
o

q

m
t t oe 1 1

2
1 1 ,t t

1 2 2 2 2 1
2 1[ ( ) ( )] ( ( )) ( )( ( ))

�
(20)

because for t1  >  0

f t
m

o t
m

f tlim e 1 1 d
2t t

0
2 2 2 2 1

2 1( ) ( ( )) ( )
→ ∫

γ
+ =

γ

γ

∞

∞
− | − |� (21)

for all test functions f(t) in R+.

3.3. The displacement process

The displacement of a free Brownian particle is obtained from integration of the velocity 
process,

x x vt s sd .
t

0
0

( ) ( )∫= +� (22)

Using the expression (15) in equation (22) and changing the order of integration in the result-
ing iterated integral, we obtain
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x x vt g s s s
1 e

d ,
t t

0 0
0

( ) ( ) ( )∫γ
Ξ− −

−
=

γ−

� (23)

where g s m1 e t s( ) ( )/( ) γ= − γ− − .
Reasoning as above, we find that the stochastic integral in equation (23) is a normal vari-

able with zero mean and covariance matrix I2σΣ = , where

q g s s
q

td
2

2 3 4e e .
t

t t2

0

2
3

2( ) ( )∫σ
γ
γ= = − + −γ γ− −

� (24)

The moments of the displacement are

x x vt
1 e

0
t

0 0( )E
⎡
⎣
⎢

⎤
⎦
⎥

γ
− −

−
=

γ−

� (25)

and the conditional second moment of the displacement is

x x x v x x x x v x

v

t p t

kT

m
t

, , , d

1 e
3

2 3 4e e ,t t t

0
2

0 0 0
2

0 0

0
2

2
2

2
2

( ( ) ) ( )

( ) ( )

E ∫

γ γ
γ

− | = | − | |

=
| |

− + − + −γ γ γ− − −
�

(26)

which is independent of x0. Using the Maxwell distribution of velocities (14), we find that the 
unconditional second moment is

γ γ
γ

γ
γ

− = − |

= − + − + −

= − +

γ γ γ

γ

− − −

−

E E E( ) ( ( ) )

( ) ( )

( )

x x x x x vt t

kT

m

kT

m
t

kT

m
t

,
3

1 e
3

2 3 4e e

6
1 e .

x v

t t t

t

0
2

0
2

0 0

2
2

2
2

2

0 0

�

(27)

The long time asymptotics of x xt 0
2( )E −  is found from (27) to be

x xt
kT

m
t

kT

ma
t t

6
for 1;0

2( )    E
γ η

γ− ∼ = �� (28)

that is, the displacement variance of each component is asymptotically kT ma3/ η. It was this 
fact that was verified experimentally by Perrin [21]. The one-dimensional diffusion coeffi-
cient, as defined in (4), is therefore given by D kT ma6/ η= .

Equation (27) implies that the short time asymptotics of x xt 0
2( )E −  is given by

x x vt
kT

m
t t

3
.0

2 2
0

2 2( ) ⟨ ⟩E − ∼ = | |� (29)

This result was first obtained by Smoluchowski.

3.4.  Reconciliation of Einstein’s and Langevin’s theories

To reconcile the Einstein and the Langevin approaches, we have to show that for two disjoint 
time intervals, t t,1 2( ) and t t,3 4( ), in the limit →γ ∞, the increments x x xt t1 2 1( ) ( )∆ = −  and 
x x xt t3 4 3( ) ( )∆ = −  are independent zero mean Gaussian variables with variances proportional 

to the time increments. Equation (23) implies that in the limit →γ ∞ the increments x1∆  and 
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x3∆  are zero mean Gaussian variables and (28) shows that the variance of an increment is 
proportional to the time increment.

To show that the increments are independent, we use (20) in (23) to obtain

x x v vs s s s

q

m
s s s s

lim lim d d

2
d d 0.

t

t

t

t

t

t

t

t

2
1 3 1 2 1 2

2 2 1 1 2

1

2

3

4

1

2

3

4

⟨ ⟩ ⟨ ( ) ( )⟩

( )

→ → ∫ ∫

∫ ∫

γ γ γ

δ

∆ ⋅ ∆ = ⋅

= − =

γ γ∞ ∞
�

(30)

As is well-known [30], uncorrelated Gaussian variables are independent. This reconciles the 
Einstein and Langevin theories of Brownian motion in liquid.

Introducing the dimensionless variables s tγ=  and xs m kT t6( ) / ( )ξ γ= , we find from 
(27) that

ξ ξ− = − + ∼
γ ∞

− �E s s s slim 0 1 e for 1s2( ) ( )    
→� (31)

and from (30) that

lim 0.1 3[ ]
→
E ξ ξ∆ ⋅ ∆ =

γ ∞� (32)

Equations (31) and (32) explain (in the context of Langevin’s description) Einstein’s quoted 
assumption that ‘ ... the movement of one and the same particle after different intervals of time 
(are) mutually independent processes, so long as we think of these intervals of time as being 
chosen not too small’.

4.  Smoluchowski’s limit of Langevin’s equation

The Langevin equation (13) serves as a model for many activated processes [31], for which 
the escape rate determines their time evolution. It is one of the most extensively studied equa-
tions in statistical physics [32]. For high damping, the joint probability density function (pdf) 
of displacement x(t) and velocity x t˙( ) breaks into a product of the stationary Maxwellian pdf 
of the velocity v ẋ=  and the time-dependent pdf of the displacement x(t), which satisfies an 
altogether different equation. This is the case not only for the linear Langevin equation, but 
holds in general.

Smoluchowski has shown [3] that as →γ ∞ the trajectories x(t) of the Langevin equa-
tion (13) converge in probability to these of the Smoluchowski equation

x U x w˙ 2 ˙ ,( )γ εγ+ =′� (33)

where w t t˙ ( ) ( )= Ξ  is δ-correlated Gaussian white noise.
A more modern derivation begins with writing the Langevin equation (13) as the phase 

space system

x v˙ =� (34)

v v U x w˙ 2 ˙ ,( )γ εγ= − − +′� (35)

and with scaling time by setting

t s.γ=� (36)

The scaled Brownian motion w t w s( ) ( )γ= γ , w s( )γ  is a standard Brownian motion in time s. 
The scaled white noise is formally
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w t w s s w s˙ d d .1 1 2( ) ( )/ ( )/γ γ γ= =γ γ− − �

Setting x s x t( ) ( )γ=γ , v s v t( ) ( )γ=γ , and using the overcircle notation for the derivative 

with respect to s, we note that x t x s˙ 1( ) ( )γ= γ− � , v t v s˙ 1( ) ( )γ= γ− � , (35) takes the form

v s v s U x s w s2 .2( ) ( ) ( ( )) ( )γ γ γ ε+ = − +′γ γ γ γ� �

Hence

( ) ( ) [ ( ( )) ( )]( )∫γ ε= + − +′γ γ γ γ γ γ− − −v s v U x u u w u0 e e d 2 d ,s
s

s u

0

2 2

which can be written as x t x s v s˙ 1( ) ( ) ( )γ= =γ γ− � , so that

( ) ( ) ( ) ( ) ( )

[ ( ( )) ( )]( )

∫

∫ ∫

γ
γ

γ ε

= + = +
−

+ − +′

γ γ γ γ γ
γ

γ γ γ

−

− −

x s x v z z x v

U x u u w u z

0 d 0 0
1 e

e d 2 d d .

s s

s z
z u

0

2

0 0

2

2

In the limit →γ ∞

x s x U x u u w u0 d 2 d ,
s

0
( ) ( ) [ ( ( )) ( )]∫ ε= + − +′∞ ∞ ∞ ∞

where w u( )∞  is Brownian motion. This is the integral form of the Smoluchowski stochastic 
differential equation

x s U x s w s2 .( ) ( ( )) ( )ε= − +′γ ∞ ∞� �
� (37)

Returning to the original time scale, (37) becomes (33), which means that (37) is the Langevin 
equation (13) without the inertia term ẍ. This means that the limit exists on every trajectory.

4.1.  Numerical solution of the Smoluchowski equation

Starting with the Smoluchowski equation in dimension d 1⩾

x a x b x wt t t t t t˙ , , ˙ ,( ) ( ( ) ) ( ( ) ) ( )= +� (38)

where x and a x t,( ) are d-dimensional vectors, w t( ) is an m-dimensional Brownian motion, 
and b x t,( ) is a d m×  matrix, approximate trajectories of (38) can be constructed on any time 
interval s  <  t  <  T by the Euler scheme

+∆ = + ∆ + ∆ ∆x x a x b x wt t t t t t t t t t, , ,( ) ( ) ( ( ) ) ( ( ) ) ( )� (39)

=x xs .N 0( )�

Boundary behavior can be imposed on the trajectories of (39) in a given domain D. For 
example, all trajectories of (39) can be instantaneously terminated when they exit D. In this 
case the boundary D∂  is called an absorbing boundary. The trajectories can be instantane-
ously reflected at D∂  back into D according to a given reflection law; in this case D∂  is called 
a reflecting boundary. They can also be either instantaneously terminated with a given prob-
ability or instantaneously reflected; then D∂  is called a partially reflecting boundary.

It can be shown that the trajectories of (39) with a given boundary behavior converge to a 
limit as t 0→∆ . The limit is defined as the solution of the Smoluchowski equation (38) with 
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the given boundary behavior. (see [18] and [55] for details and for other types of boundary 
behavior.)

4.2. The probability density of the Smoluchowski trajectories

We assume that in the one-dimensional case b x t, 0( ) δ> >  for some constant δ. We assume 
for now that a(x,t) and b(x,t) are deterministic functions. To construct the pdf of a trajectory 
of (39), we note that the pdf of xN(t) can be expressed explicitly for t on the lattice, because 
(39), written as

w t
x t t x t a x t t

b x t t

,

,
,N N N

N
( ) ( ) ( ) ( ( ) )

( ( ) )
∆ =

+∆ − −
� (40)

means that for all t on the lattice the expressions on the right-hand side of (40) are indepen-
dent, identically distributed Gaussian variables. It follows that the pdf of the entire Euler 
trajectory is the product

∏ π

…

= ∆ −
− − ∆

∆=
− −

− − − −

− −

⎧
⎨
⎩

⎫
⎬
⎭

p x t x t x t

b x t t
x x a x t t

b x t t

, ; , ; ; ,

2 , exp
,

2 ,
.

n n

k

n

k k
k k k k

k k

1 1 2 2

1

2
1 1

1 2 1 1 1
2

2
1 1

( )

[ ( ) ] [ ( ) ]
( )

/

�

(41)

Setting xn  =  x and integrating over R with respect to all intermediate points x x x, , , n1 2 1… − , 
we find from (41) that the transition pdf of the trajectory satisfies on the lattice the recurrence 
relation

∫ π
+∆ | =

|

∆
−
− − ∆

∆

⎧
⎨
⎩

⎫
⎬
⎭R

p x t t x
p y t x y

t b y t

x y a y t t

b y t t
,

, d

2 ,
exp

,

2 ,
.N

N
0

0
2

2
( )

( )
( )

[ ( ) ]
( )

�
(42)

The solution of the integral equation (42) is called Wiener’s discrete path integral. Its limit as 
N →∞ is called Wiener’s path integral.

For t t s N( )/∆ = − , in the limit N →∞, the pdf p x t x,N 0( )|  of the solution x t,N( )w  of 
(39) converges to the solution p x t x, 0( )|  of (42), where w is the entire discrete path of the 
Brownian motion w(t) on the lattice. Expansion of p x t x,N 0( )|  in (42) shows that the pdf 
p x t x, 0( )|  is also the solution of the initial value problem

[ ]( ) ( ) ( ) ( ) ( )∂ |
∂

=
∂ |

∂
−
∂ |

∂

⎡⎣ ⎤⎦p y t x s

t

b y t p y t x s

y

a y t p y t x s

y

, , 1

2

, , , , , ,2 2

2

�
(43)

with the initial condition

p y t x s y xlim , , .
t s

( ) ( )δ| = −
↓� (44)

Equation (43) is called the Fokker–Planck–(Smoluchowski) equation (FPE) (see [55]).
In the Smoluchowski equation (38) for d n 1⩾= , the n m×  matrix

B x xt b t, ,ij
n m( ) { ( )}= ×� (45)

is called the noise matrix, and x B x B xt t t, , ,T1

2
( ) ( ) ( )σ =  is called the diffusion matrix. The 

operator

y yp
y y

t p a t p, , ,y
i

d

i
j

d

j
ij i

1 1

( ) ( )
⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑ σ=
∂
∂

∂
∂

−
= =

L� (46)
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is called the Fokker–Planck operator, or the forward Kolmogorov operator.
As in the one-dimensional case, the pdf y xp t s, ,( )|  that x yt( ) = , given that x xs( ) = , is the 

solution of the Fokker–Planck–Smoluchowski initial value problem

y x
y x x y

p t s

t
p t s t s

, ,
, , for , , ,y

n( )
( )     R∂ |

∂
= | ∈ >L� (47)

y x x yp t slim , , .
t s

( ) ( )δ| = −
↓� (48)

It can be written as the conservation law by defining the probability flux density vector

∑ σ| =−
∂
∂

| − |
=

y x y y x y y xJ t s
y

t p t s a t p t s, , , , , , , ,i

j

d

j
ij i

1
( ) ( )( ) ( ) ( )

�

(49)

and writing (47) in the divergence form

y x
J y x

p t s

t
t s

, ,
div , , .y

( )
( )

∂ |
∂

= − |� (50)

The probability density at time t and at point x can be represented for any domain Ω by the 
limit as N →∞ of

{
}

{ }( ) ( ) ( ) ⩽ ⩽ ( )

( ) ( )( ))

( ) ( ( )) ( ( ))

( ) ( ( ))

∫ ∫ ∫ ∏ σ

σ

π

∈Ω ∈Ω … = +∆ | =

=
∆

× −
∆

− − ∆

× − − ∆

Ω Ω Ω = −

− −
−

−

− −

⎡

⎣
⎢
⎢

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

�

x x x x x y

y

x

y x a x x

y x a x

t t t t T t t

t t

t
t t t t

t t t

Pr , , , , 0

d

2 det

exp
1

2

,

N N N N N

j

N
j

n
j N

j j N j N
T

j N

j j N j N

1, 2,

1 1,

1, 1,
1

1,

1, 1,

�

(51)

where

t
t

N
t j t, ,j N,∆ = = ∆

and

x yt N0,( ) =

in the product. The limit is the Wiener integral defined by the stochastic differential equa-
tion (38) with appropriate boundary condition. In the limit N →∞ the integral (51) converges 
to the solution of the Fokker–Planck equation (50) in Ω. Similarly, expanding the path integral 
with respect to x and s, we find that y xp t s, ,( )|  satisfies the backward Kolmogorov equation 
[18]

∑∑ ∑σ| =
∂ |

∂ ∂
+

∂ |

∂
∗

= = =

L y x x
y x

x
y x

p t s s
p t s

x x
a s

p t s

x
, , ,

, ,
,

, ,
x

i

n

j

n
ij

i j
i

n
i

i
1 1

2

1
( ) ( ) ( )

( ) ( )
�

(52)

with the terminal condition

( ) ( )δ| = −
↑

y x y xp t slim , , .
t s� (53)
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The Fokker–Planck equation can be generalized when a killing measure is added to the dynam-
ics. A killing measure represents the probability per unit time and unit length to terminate a 
trajectory at a given point at a given time. Mixed boundary conditions and Fokker–Planck 
equation for the survival probability with killing is discussed in [14].

4.3.  Diffusion processes and diffusion models of large data sets

A d-dimensional Markov process x t( ) is called a diffusion process with (deterministic) drift 
vector field a x t,( ) and (deterministic) diffusion matrix x t,( )σ , if it has continuous trajectories,

x x x x a x
t

t t t t tlim
1

,
t 0

{ ( ) ( ) ( ) } ( )
→

E
∆

+∆ − | = =
∆

� (54)

σ
∆

+∆ − +∆ − | = =
∆

E x x x
t

x t t x t x t t x t t tlim
1

,
t

i i j j ij

0
{ }[ ( ) ( )][ ( ) ( )] ( ) ( )

→

�

(55)

for i j d, 1, 2, ,= … , and for some 0δ>

x x x x
t

t t t tlim
1

0.
t 0

2{ ( ) ( ) ( ) }
→

E
∆

+∆ − | = =δ

∆

+

It can be shown [18] that under mild regularity assumptions on the coefficient the solution of 
the stochastic differential equation (SDE)

x a x B x wt t t t t t˙ , , ˙( ) ( ( ) ) ( ( ) ) ( )= +� (56)

is a diffusion process with drift field a x t,( ) and diffusion matrix x B x B xt t t, , ,T1

2
( ) ( ) ( )σ = . 

Also a partial converse is true: given sufficiently nice drift field a x t,( ) and a strictly positive 
definite diffusion matrix x t,( )σ  of a diffusion process, there is a noise matrix B x t,( ) and a 
Brownian motion w t( ) such the process is a solution of the SDE (56) [18, 19].

Equations (54) and (55) reconstruct the SDE from its trajectories. The discrete version of 
these equations can be used as approximations to the coefficients, when a sufficiently large set 
of trajectory fragments is given (see [56, 58, 59]). Indeed, large number (tens of thousands) 
of short single particle trajectories (SPTs), collected by super-resolution methods, at tens of 
nanometer precision for motion occurring in cell are ideal data to recover drift and diffusion 
tensors. But the sampled molecular process cannot be directly modeled by the overdamped 
Langevin equation, which describes diffusion on the microscopic level, because an additional 
noise of localization is added in tracking the motion (algorithm and point spread function 
error). Using a stochastic model of the acquired data to calibrate the model, it is possible 
to distinguish the perturbation added to the physical motion (stochastic equation) [58]. The 
denoising procedure of the SPTs reveals that effective diffusion coefficient contains the diver-
gence of deterministic drift component and also provides a criteria to differentiate trapped 
stochatic particle from immobile ones [58].

4.4. The MFPT and survival probability

If the Smoluchowski trajectories are terminated at the boundary D∂  of a given domain, the 
pdf vanishes on D∂ . Thus equations (47) and (48) have to be supplemented by the boundary 
condition

y x y xp t s D D t s, , 0 for , , .( )        | = ∈ ∂ ∈ >� (57)
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In this case, the first passage time to the boundary D∂  is

xt t Dinf : .D { ( ) }τ = ∉� (58)

Thus, the probability that the Smoluchowski trajectory is still in D at time t  >  s, given that at 
time s  <  t it started at x D∈ , is given by

∫∈ | = = |x x x y x yt D s p t sPr , , d
D

{ ( ) ( ) } ( )� (59)

Actually, x x x x xt D s t sPr Pr ,D{ ( ) ( ) } { ( ) }τ∈ | = = > | =  which is the survival probability at 
time t  >  s of the Smoluchowski trajectory that started at x at time s  <  t.

If the Smoluchowski trajectories are reflected at the boundary D∂  of a given domain such 
that the normal flux at the boundary vanishes [16], then the boundary condition becomes

( ) ( )    ν| ⋅ = ∈ ∂ ∈ >J y x y y xt s D D t s, , 0 for , , ,� (60)

where y( )ν  is the unit outer normal vector at y D∈∂ .
When the boundary D∂  absorbs the Smoluchowski trajectories, the expected MFPT to the 

boundary of Smoluchowski trajectories in D is found by integrating the survival probability 
to obtain the MFPT as

x x y x ys p t s t, , d d .D
s D

[ ( ) ] ( )E ∫ ∫τ | = = |
∞

� (61)

Setting x x xu s s, D( ) [ ( ) ]E τ= | = , using the backward Kolmogorov equation  and Green’s 
identity, we obtain the backward boundary value problem

x
x

xu s
u s

s
D,

,
1 for ,x ( ) ( )    +

∂
∂

= − ∈∗L� (62)

x xu s D, 0 for .( )    = ∈∂� (63)

Note that if the coefficients σ and a are time-independent, then (52), (63) reduce to the time-
homogeneous elliptic Pontryagin–Andronov–Vitt (PAV) [17] boundary value problem in D

x xu D1 for ,x ( )    = − ∈∗L� (64)

x xu D0 for .( )    = ∈∂� (65)

If the boundary is reflecting, then the absorbing boundary condition (65) for the PAV equa-
tion (64) is changed to

J x x x D0 for .( ) ( )    ν⋅ = ∈ ∂� (66)

If D∂  is absorbing on a part Da∂  and reflecting on the remaining part D D Dr a∂ − ∂ − ∂ , 
then the boundary conditions for the PAV equation is absorbing on Da∂  and reflecting on Db∂ .

Note further that the MFPT to the boundary is given by (61) , where y xp t s, ,( )|  is the solu-
tion of the FPE with absorbing boundary conditions also in the case of reflecting boundaries, 
because prior to reaching the boundary the Smoluchowski trajectories are independent of 
boundary behavior.

5.  Modeling in cell using the stochastic narrow escape

The narrow escape problem is to evaluate the MFPT when the reflecting part of the boundary 
Db∂  is much bigger than the absorbing part Da∂  [35, 36, 38, 39, 40–42, 44, 45]. In this case Da∂  
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represents a small absorbing window in the boundary, through which trajectories can escape 
the domain D, while the large reflecting part Db∂  represents an impermeable wall (figure 1), 
such as a lipid cell membrane that is impermeable to diffusing ions. This mathematical model 
represents many biological models. Thus equation (64) and the boundary conditions (65) or 
(66) are the basis for the analysis of the narrow escape problem. The MFPT τ̄ depends on the 
starting point x of the Brownian trajectory, thus it should be denoted x¯( )τ . This function is the 
solution of the classical mixed Neumann-Dirichlet boundary value problem for the Laplace 
equation [14, 18],

x xD 1 for2 ¯( )    τ∇ = − ∈Ω� (67)

x
x

n
0 for r

¯( )    τ∂
∂

= ∈∂Ω� (68)

x x0 for ,a¯( )    τ = ∈∂Ω� (69)

where D is the diffusion coefficient and n is the unit outer normal to the boundary [18]. 
The system (67)–(69) follows from the backward Kolmogorov equation [18] (the adjoint of 
the Fokker–Planck equation) for the transition probability density function y xp t,( )|  of the 
Brownian trajectories,

∂ |
∂

= ∇ | ∈Ω
y x

y x x y
p t

t
D p t

,
, for ,x

2( )
( )   � (70)

y x
y x

p t

n

,
0 for ,

x
r

( )
   

∂ |
∂

= ∈Ω ∈Ω� (71)

y x y xp t, 0 for , a( )    | = ∈Ω ∈Ω� (72)

δ| = − ∈Ωy x y x x yp , 0 for , .( ) ( )   � (73)

Figure 1.  Brownian trajectory escaping through a small absorbing window a domain 
with otherwise reflecting boundary .
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The survival probability of Brownian trajectories that start at x∈Ω is

{ } ( )∫τ> | = |
Ω

x y x yt p tPr , d� (74)

and its mean value is

x xt tPr d .
0

¯( ) { }∫τ τ= > |
∞

� (75)

It follows that

¯( ) { }
( )

∫ ∫ ∫τ τ∇ = ∇ > | =
∂ |
∂

=−
∞ ∞

Ω
x x

y x
yD D t t

p t

t
tPr , d

,
d d 1.x

2

0

2

0

�
(76)

The last equality in (76) follows from the initial condition (73) and the Neumann and Dirichlet 
conditions (68) and (69) are inherited from (71) and (72), respectively.

No explicit solutions to the problem (67)–(69) are known in general [14]. If the absorbing 
part of the boundary a∂Ω  is much smaller than the entire boundary ∂Ω, numerical solutions 
to the problem are very hard to construct due to the presence of a boundary layer near a∂Ω , 
where gradients are very large so the numerical complexity becomes prohibitive. The problem 
cannot be circumvented by Brownian dynamics simulations of the MFPT τ̄, because reach-
ing a∂Ω  is a rare event on the time scale of diffusion. The remedy to these difficulties is the 
construction of analytical approximations to the solution of (67)–(69) by new asymptotic 
methods developed specifically for the problem at hand. In the next section, we summarize 
the asymptotic formulas solution of (67)–(69). We briefly mention how they are derived and 
refer to [14] for more details.

5.1.  Narrow escape formula in two-dimensions

We summarize here the asymptotic formulas of the MFPT (67) when the domain Ω is in the 
plane and absorbing boundary is a small sub arc a∂Ω  (of length a) of the boundary ∂Ω. We 
have reviewed the mathematical method and the analysis in [60, 62]. There is little intuition 
behind these formulas and it is not fruitful to guess what there are. It is indeed hard to tell in 
advance how the geometry enters into the formulas. The recipe we adopted is to follow the 
analytical derivations that reveal how local and global structures, smoothness or not, local 
curvature controls the narrow escape time.

	 1.	When a∂Ω  is a sub-arc of a smooth boundary, the MFPT from any point x in Ω to a∂Ω  is 
denoted x a¯ →τ ∂Ω . For

a
1aε

π π
=
|∂Ω |
|∂Ω|

=
|∂Ω|

�� (77)

		 the MFPT is independent of x outside a small vicinity of a∂Ω  (called a boundary layer). 
Thus for x∈Ω, outside a boundary layer near a∂Ω ,

D
Oln

1
1 ,x a¯ → ( )τ

π ε
=
|Ω|

+∂Ω� (78)

		 where O(1) depends on the initial distribution of x [35–57]. This result was derived inde-
pendently using matched asymptotic technics and Green’s function method.
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		 If Ω is a disc of radius R, then for x at the center of the disk (figure 2(A)),

R

D

R

a
Olog 2 log 2

1

4
,x

2

a¯ → ( )
⎡
⎣⎢

⎤
⎦⎥τ ε= + + +∂Ω

		 and averaging with respect to a uniform distribution of x in the disk [14]

R

D

R

a
Olog 2 log 2

1

8
.

2

¯ ( )
⎡
⎣⎢

⎤
⎦⎥τ ε= + + +

Figure 2.  Classification of NET formula. (A) The absorbing boundary ∂Ωa is a short 
arc (marked green) of the smooth boundary curve ∂Ω. (B) ∂Ωa is an absorbing disk 
arc (marked green) on a surface. (C) ∂Ωa is a short arc at a corner arc (marked ε). (D) 
∂Ωa is an absorbing segment (resp. circle) at the end of a narrow strip (resp. cylinder) 
connected non-smoothly to the head in a planar (resp. surface of revolution) dendritic 
spine model. (E) ∂Ωa is a short segment CD at the end of the narrow strip Ω2 in the plane 
or a circle at the end of the narrow cylinder Ω2 on a surfaced of revolution connected 
smoothly to the head. (F) ∂Ωa is a short arc at a boundary cusp arc (marked ε). (G) 
∂Ωa is a narrow opening at the end of a cusp-like funnel. (H) ∂Ωa is an opening at the 
end of a funnel of finite angle . (I) The narrow passage is formed by an obstacle. (J) A 
dumbbell-shaped domain.
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		 This result was obtained from generalizing Sneddon’s method for mixed boundary value 
problem. The method is based on Abel’s transformation [40–42]. The flux through a hole 
in a smooth wall on a flat membrane surface is regulated by the area |Ω| inside the wall, 
the diffusion coefficient D, and the aspect ratio ε (77). In the case of Brownian motion 
on a sphere of radius R the MFPT to an absorbing circle centered on the north-south axis 
near the south pole with small radius a R sin 2/δ=  is given by

R

D

2
log

sin

sin
,

2
2

2

τ̄ =
θ

δ� (79)

		 where θ is the angle between x and the south-north axis of the sphere (figure 2(B)).
	 2.	If the absorbing window is located at a corner of angle α, then

D
Olog

1
1 ,

g¯ ( )
⎡
⎣⎢

⎤
⎦⎥τ

α ε
=
|Ω|

+� (80)

		 where g|Ω|  is the surface area of the domain on the curved surface, calculated according to 
the Riemannian metric on the surface [40]. Formula (80) indicates that control of flux is 
regulated also by the access to the absorbing window afforded by the angle of the corner 
leading to the window (figure 2(C)). This formula was obtained using a conformal map 
sending a corner to a flat line.

	 3.	If the absorbing window is located at a cusp, then τ̄ grows algebraically, rather than 
logarithmically. Thus, in the domain bounded between two tangent circles, the expected 
lifetime is

d D
O

1

1
1 ,

1¯
( )

( )⎜ ⎟
⎛
⎝

⎞
⎠τ

ε
=

|Ω|
−

+−� (81)

		 where d  <  1 is the ratio of the radii [42] (figure 2(F)). Formula (81) indicates that a 
drastic reduction of flux can be achieved by putting an obstacle that limits the access to 
the absorbing window by forming a cusp-like passage. This formula was derived using 
the exponential conformal map.

	 4.	When a∂Ω  (of length a) is located at the end of a narrow neck with radius of curvature Rc, 
the MFPT is given in [14, 63] as (figures 2(G) and (I))

D a R
O a

4 2
1 1 for .

c
¯

/
( ( ))   τ =

|Ω|
+ |∂Ω|�� (82)

		 This formula is derived by a new method that uses a Mobius transformation to resolve 
the cusp singularity [14, 63]. The boundary layer at the cusp is sent to a banana shaped 
domain. Asymptotic formula for a general cusp with an arbitrary power law are not known.

		 For a surface of revolution generated by rotating the curve about its axis of symmetry 
[63], we use the representation of the generating curve

y r x x, 0( )    = Λ< <

		 where the x-axis is horizontal with x = Λ at the absorbing end AB. We assume that the 
parts of the curve that generate the funnel have the form
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( ) ( )   

( ) ( )
( )

( ( ))       
ν ν

ν

= | | =

= +
− Λ
+

+ > =Λ
ν

ν

+

�

r x O x x

r x a
x

o x

near 0

1
1 1 for 0 near ,

1�
(83)

		 where ABa 21

2
/ε= =  is the radius of the gap, and the constant � has dimension of 

length. For 1ν =  the parameter � is the radius of curvature Rc at x = Λ. The MFPT from 

the head to the absorbing end AB is given by

D2 sin
,

a1

1
1 1

1

( )
¯ ( ) ( )

/
/

τ
ν

∼
Λ ν

ν ν
ν

νπ
ν

+

+
+

+

�
S� (84)

		 where S is the entire unscaled area of the surface. In particular, for 1ν =  the MFPT (84) 
reduces to

D a4 2
.¯

/
τ∼

�

S
� (85)

	 5.	When a bulky head is connected to an essentially one-dimensional strip (or cylinder) of 
small radius a and length L, as is the case of a neuronal spine membrane (figure 2(D)). 
The connection of the head to the neck can be at an angle or by a smooth funnel. The 
boundary of the domain reflects Brownian trajectories and only the end of the cylinder 

a∂Ω  absorbs them. The domain 1Ω  is connected to the cylinder at an interface i∂Ω , which 
in this case is an interval AB. The MFPT from x 1∈Ω  to a∂Ω  is given by

L

D

L

D2
.x x

a

2
1

a i¯ → ¯ →τ τ= + +
|Ω |
|∂Ω |

∂Ω ∂Ω� (86)

		 The flux dependence on the neck length is quite strong. This formula is derived using the 
additive property of the MFPT [66].

	 6.	A dumbbell-shaped domain (of type (VI)) consists of two compartments 1Ω  and 3Ω  and 
a connecting neck 2Ω  that is effectively one-dimensional (figure 2(J)), or in a similar 
domain with a long neck. A Brownian trajectory that hits the segment AB in the center of 
the neck 2Ω  is equally likely to reach either compartment before the other; thus AB is the 
stochastic separatrix (SS). Therefore the mean time to traverse the neck from compart-
ment 1Ω  to compartment 3Ω  is asymptotically twice the MFPT SS1¯ →τΩ . Neglecting, as we 
may, the mean residence time of a Brownian trajectory in 2Ω  relative to that in 1Ω  or in 3Ω  
we can write the transition rates from 1Ω  to the 3Ω  and vv as

1

2
,

1

2
.

SS SS
1 3

1

3 1

3

→ ¯ →
→ ¯ →

λ
τ

λ
τ

= =Ω Ω
Ω

Ω Ω
Ω

� (87)

		 These rates can be found from explicit expressions for the flux into an absorbing window

1
,1

¯
λ

τ
∼� (88)

		 where τ̄ is given in (86). Here x i¯ →τ ∂Ω  is any one of the MFPTs given above, depending 
on the geometry of 1Ω  with L half the length of the neck and with SS a= ∂Ω . The radii 
of curvature Rc,1 and Rc,3 at the two funnels may be different in 1Ω  and 3Ω . The smallest 
positive eigenvalue λ of the Neumann problem for the Laplace equation in the dumbbell 
is to leading order 1 3 3 1( → → )λ λ λ= − +Ω Ω Ω Ω . For example, if the solid dumbbell consists 
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of two general heads connected smoothly to the neck by funnels (see (93)), the two rates 
are given by

R

a R D
o

L

D

L

a D

R

a R D
o

L

D

L

a D

1
2 1 1

4

1
2 1 1

4

c

c

c

c

,1
3 2

1

,1

2
1
2

,3
3 2

3

,3

2
3
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1 3

3 1
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⎡

⎣
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⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎡
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⎛
⎝

⎞
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⎤

⎦
⎥

λ π

λ π

=
|Ω |

+ + +
|Ω |

=
|Ω |

+ + +
|Ω |

Ω Ω

Ω Ω

�

(89)

		 (see [66]). Formulas (89) indicate that the unidirectional fluxes between the two compart-
ments of a dumbbell-shaped domain can be controlled by the area (or surface area) of the 
two and by the type of obstacles to the access to the connecting neck. The equilibration 
rate in the dumbbell, λ, is thus controlled by the geometry.

	 7.	The mean time to escape through N well-separated absorbing windows of lengths aj at 
the ends of funnels with radii of curvature j� , respectively, in the boundary ∂Ω of a planar 
domain Ω is given by

D a
o a

2
1 1 for .

j
N

j j
j j

1

¯
/

( ( ))    /τ
π

=
|Ω|

∑
+ |∂Ω|

= �
� �� (90)

		 The probability to escape through window i is given by

p
a

a
.i

i i

j
N

j j1

/
/

=
∑ =

�

�
� (91)

		 Formulas (90) and (91) are significant for diffusion in a network of compartments con-
nected by narrow passages (e.g. on a membrane strewn with obstacles). The dependence 
of the MFPT τ̄ and of the transition probabilities pi on the local geometrical properties of 
the compartments renders the effective diffusion tensor in the network position-dependent 
and can give rise to anisotropic diffusion.

5.2.  Narrow escape formula in three-dimension

We now summarize the Narrow Escape Time formula in three-dimensions. The methods are 
the same as in two dimensions: Matched asymptotic or Greens function and conformal map-
ping to resolve cusp singularities. Indeed, the axial symmetry allows reducing the three- to 
two- dimensions and thus to use of conformal transformations [14].

	 1.	The MFPT to a circular absorbing window a∂Ω  of small radius a centered at 0 on the 
boundary ∂Ω is given by [43]

aD a a o a a4 1 log log
,x L N0 0

2

a¯ →
( )( ) ( )⎡⎣ ⎤⎦

τ =
|Ω|

+ +
π

∂Ω +� (92)

		 where L 0( ) and N 0( ) are the principal curvatures of the boundary at the center of a∂Ω . 
This formula was derived using the second order expansion of the Neuman-Green’s func-
tion at the pole [43].
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	 2.	The MFPT from the head of the solid of revolution, obtained by rotating the symmetric 
domain about its axis of symmetry, to a small absorbing window a∂Ω  at the end of a 
funnel (figure 2(H)) is given by

R

a R D
o a R

1

2
1 1 for ,c

c
c

3 2

¯ ( ( ))   
/

⎜ ⎟
⎛
⎝

⎞
⎠τ =
|Ω|

+ �� (93)

		 where the Rc is the radius of curvature of the rotated curve at the end of the funnel [66].
	 3.	The MFPT from a point x in a bulky head Ω to an absorbing disk a∂Ω  of a small radius a 

at the end of a narrow neck of length L, connected to the head at an interface i∂Ω  is given 
by the connection formula (86). When the cylindrical neck is attached to the head at a 
right angle the interface i∂Ω  is a circular disk and x i¯ →τ ∂Ω  is given by (92). When the neck 
is attached smoothly through a funnel, x i¯ →τ ∂Ω  is given by (93).

	 4.	The mean time to escape through N well-separated absorbing circular windows or radii aj 
at the ends of funnels with curvatures j� , respectively, is given by

D

1

2
.

j
N

j
a

1

3 2
j

j( )
¯ /τ =

|Ω|

∑ = � �

� (94)

		 The exit probability through window i is given by

p
a

a
.i

i i

j
N

j j

3 2 1 2

1
3 2 1 2

/ /

/ /=
∑

−

=
−

�

�
� (95)

	 5.	The principal eigenvalue of the Laplace equation in a dumbbell-shaped structure is given 
in item (vi), equations (87)–(89) above [66].

	 6.	The leakage flux through a circular hole of small radius a centered at 0 in the reflecting 
boundary is given by [43]

J aDu O
a a

04 log ,a 0

2

2 3 1 3
( ) / /

⎛
⎝
⎜

⎞
⎠
⎟= +

|Ω| |Ω|
� (96)

		 where u 00( ) is the concentration of diffusers at the window in the same model without the 
absorbing window.

We refer the reader to the classical literature about the asymptotic formula for narrow escape 
time [61], the dire Strait time (when escape occurs at a cusp boundary) [63] and the recent 
monograph [14] for applications in cellular biology.

6.  Stochastic Smoluchowski equation for modeling polymer dynamics

A significant application of the Smoluchowski’s limit equation  is to polymer models. The 
Rouse model is defined as a collection of beads connected by springs [64]. Monomers are 
positioned at Rn (n  =  1,2,...N), subject to Brownian motions and the spring forces are due to 
the coupling between the nearest neighboring beads. The potential energy is defined by

R R R
2

,
n

N

n n
1

1
2( ) ( )∑φ

κ
= −

=
−� (97)
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In the Rouse model, only neighboring monomers interact [64]. In the Smoluchowski’s limit 
of the Langevin equation, the dynamics of monomer Rn is driven by the potential R R, .., N1( )φ , 
which generates the force R R, ..,R N1n ( )φ−∇ . The ensemble of stochastic equations is

R
R R R

w
t

D D
t

d

d
2 2

d

d
n n

n n n1 1( )κ= − − − +− +� (98)

for n  =  1,..N. In this model, at equilibrium all beads are centered at zero, but the variance of 
the distances in a polymer realization is given by

R R b ,n n1
2 2⟨ ⟩| − | =+� (99)

where b is the standard deviation of the bond length, dk T bB
2/κ =  is the spring constant with 

d the spatial dimension, kB is the Boltzmann coefficient and T the temperature. For a freely-
joint-chain polymer, the energy between monomer is changed to

R R R R l, ..,
2

,N
n

N

n n1
1

1 0
2( ) ( )∑φ

κ
= | − |−

=
−� (100)

leading to a steady state configuration, where the mean distance between neighboring beads 
is R R ln n1 0⟨ ⟩| − | =+ , where by taking the limit l0  =  0, we recover the classical Rouse model. 
Starting with a given configuration, the relaxation of a Rouse polymer to steady state in a free 
space can be analyzed using the Fourier space

u R ,p
n

N

n p
n

1
∑ α=
=

� (101)

where the change of coordinates is encoded in the matrix

N
p

N
n

p
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1
, 0

2
cos 1 2 , otherwise.
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⎪
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⎠

α
π

=
=

−
� (102)

u0 represents the motion of the center of mass and the potential φ defined in equation (97) is 
now

u u u, ..,
1

2
,N

p

N

p p1 1
1

1
2( ) ∑φ κ=−

=

−

� (103)

where

p

N
4 sin

2
.p

2( )κ κ
π

=� (104)

Equations (98) are now decoupled in a (N  −  1)d-independent Ornstein–Uhlenbeck (OU) 
processes

u
u

w

t
D D

t

d

d
2

d

d
,

pp
p p p pκ= − +

∼
� (105)

where wp∼ are independent d-dimensional Brownian motions with mean zero and variance 
1 and Dp  =  D for p  =  1..N  −  1, while D0  =  D/N and the relaxation times are defined by 
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D1p p/τ κ= . The center of mass behaves as a freely diffusing particle. Starting from a straight 
line, the time to relax for a Rouse polymer is dominated by the slowest time constant

D D

N

D

1 1

4 sin
.N

N
1

1

2
2

2

2( )
τ

κ κ κπ
= = ≈π� (106)

6.1.  Anomalous motion of a Rouse polymer

The motion of monomer Rc of a Rouse polymer is related to the Fourier coefficients by

R u ,c
p

N

p
c

p
0

1

∑ α=
=

−

� (107)

where p
cα  are described by relation (102) and up satisfy equations (105), which form an ensem-

ble of Ornstein–Uhlenbeck processes, for which the variance is simply
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t D t

0
1

1 e , for 1,
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(108)

The relaxation times are defined by

D

1
,p

p
τ

κ
=� (109)

while the diffusion constant is D D Ncm /= . The shortest timescale is D1 4N 1 /( )τ κ≈−  which 
is half of the time D1 2s /( )τ κ=  for a free monomer to diffuse a mean squared distance 
between adjacent monomers (b 12 /κ= ). The center of mass is characterized by the time scale 

b N D N D0
2

cm
2/ /( )τ κ≡ =  which is the time for a particle to diffusion across the polymer size. 

For long polymers 0 1
2/τ τ π≈ . Using relation (108), the MSD of monomer Rc is a sum of inde-

pendent OU-variables,
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2
2

2
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�
(110)

where d is the spatial dimension. Formula (110) shows the deviation with MSD of a Brownian 
motion, for which the correlation function increases linearly with time. There are three dis-
tinguish regimes:

	 1.	For short time t N 1τ −� , t Dtp
2( )σ ≈ , independent of p, the sum in equation (110) leads to

R dDtvar 2 ,c( )≈� (111)

		 which is the diffusion regime.
	 2.	For large time, t 1τ� , the exponential terms in relation (110) becomes independent of t. 

Only the first term in equation (108) corresponding to the diffusion of the center of mass 
gives the time-dependent behavior. This regime is dominated by normal diffusion, with a 
diffusion coefficient D/N.

	 3.	For intermediate times tN 1 1τ τ− � � , such that t2 1p/τ > , the sum of exponentials contrib-
utes to equation (110). The variance (110) is
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π
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� (112)

		 where pmin is such that t2pmin
τ = . We have R tvar c

1 2( ) /∼ . A Rouse monomer exhibits anom-
alous diffusion. The time interval can be arbitrarily long with the size N of the polymer.

6.2.  Looping time: a brief summary of an analytical approach

The first looping time between two monomers is the First Encounter Time eτ  for two mono-
mers n n,a b to come into a distance bε< , defined by

R Rt t tinf 0 such that ,e n na b{       ( ) ( ) ⩽ }τ ε= > | − |� (113)

where Rna and Rnb follows for example the Rouse equation (98). We present the asymptotic 
computation of the Mean First Encounter Time (MFET) e⟨ ⟩τ  for the two ends R R,N 1 meets. 
The two monomers meet when distance is less than bε< , that is

R RN 1 ⩽ ε−� (114)

In Rouse coordinates, u Rp n
N

p
n

n1α= ∑ =  where p
nα  are defined in (102), condition (114) is

u
N

p N2
2

cos 2 .
p

p
odd

( / ) ⩽∑ π ε� (115)

The end-to-end encounter is independent of the center of mass, with coordinate u0. Thus, the 
MFET is the MFPT for the (N  −  1)d-dimensional stochastic process

u u ut t t, .. ... ,N1 1( ) ( ( ) ( )) ˜= ∈Ω×Ω ×Ω = Ω−� (116)

where 2RΩ =  or 3R  and up satisfies the OU-equations (105) to the boundary of the domain

S P Psuch that dist ,
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,{ ˜       ( ) ⩽ }ε= ∈Ω Sε� (117)

where dist is the Euclidean distance and

u u u p N, .. cos 2 0N
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p1 1
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{( ) ˜ ( / ) }∑ π= ∈Ω =−S� (118)

is a submanifold of codimension d in Ω̃. The probability density function (pdf) u xp t t,( ( ) )=  
satisfies the forward Fokker–Planck equation (FPE) [18]

φ
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with boundary condition xp t, 0( ) =  for x S∈∂ ε , xp0( ) is the initial distribution and the poten-

tial uu u, .., N p p p1
1

2
2( )φ κ= ∑  was introduced in (103).

The solution of equation (119) is expanded in eigenfunctions

x xp t a w, e e ,x

i
i
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0
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λ φ
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ε

� (120)
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where ai are coefficients, xw
i
( )λε  and iλ

ε  are the eigenfunctions and eigenvalues respectively of 
the operator L in the domain S˜Ω = Ω−ε ε . The probability distribution that the two ends have 
not met before time t is the survival probability

xp t Pr t p t x, d ,( ) { } ( )∫τ= > =
Ω

ε
ε

� (121)

and the first looping time is

ut t Sinf 0, .{ ( ) }τ = > ∈∂ε ε� (122)

Using expansion (120), p t C4 ei i
Dt
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i 0 i i

( ) ( ) ( ) ( )∫ ∫= λ λ
φ

Ω Ω
−

ε

ε

ε

ε . 

Starting with an equilibrium distribution xp e x
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and finally the MFET is given by
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Starting from the equilibrium distribution C 10≈ , while the other terms are Ci  =  o(1), as we 
shall see, the first term is the main contributor of the series.

6.3.  Computing the eigenvalues of the Fokker–Planck equation and the MFET

The eigenvalues iλ
ε  of the operator L (equation (119)) are obtained by solving the forward FPE 

in d N 1( )R − , with the zero absorbing boundary condition on the entire boundary of the domain 
Sε  (see equation (117)), which is the tubular neighborhood of the (N  −  1)d-dimensional sub-
manifold S. For small ε, the eigenvalues can be computed from the following regular expan-
sion near the solution of the domain with no domain Sε :
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where the eigenfunction w
i
0λ  and eigenvalues i

0λ  are associated to the non perturbed operator 
(no boundary) [71], d  =  3,2.

In the context of the Rouse polymer, the volume element is xVd e dx
x g

( )= φ− , xd g, a measure 

over the sub-manifold S and c2
2

3 2

3 2

( / )

/
= π
Γ

 [71]. The unperturbed eigenfunctions w
i
0λ  are prod-

ucts of Hermite polynomials [72], that depend on the spatial coordinates and the eigenvalues 

i
0λ  are the sum of one dimensional eigenvalues [73]. The first eigenfunction associated to the 

zero eigenvalue is w 1 2
0
0 ˜ /=|Ω|λ

− . The first eigenvalue for ε small is obtained from relation 
(124) in dimension 3 with 0i
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which is the ratio of the closed to all polymer configurations. Using the potential φ (defined in 
(103)), the volume is computed explicitly from Gaussian integrals
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while the parametrization of the constraint (118) leads to
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where p Ncos 2p ( / )ω π= . In summary, for fix N and small ε,
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The zero eigenvalue is sufficient to characterize the MFET, confirming that the FET is almost 
Poissonian, except for very short time. Moreover, the second term in the expansion of 0λ

ε  is 
proportional to 1/N. Using the approximation C 10∼  and relation (123), for d  =  3, the MFET 
is approximated by

D D A N
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where A is a constant that has been estimated numerically. Indeed, with 
2

= εε , the MFET is 
for d  =  3
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which hold for a large range of N, as evaluated with Brownian simulations (figure 3). The 
value of the coefficient is A3  =  0.053 [73] (A b D0.0533

2/= ). These estimates are obtained for 
fixed N and small ε.

Similar for d  =  2, a a two dimensional space, the asymptotic formula for MFET [73] is
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All these asymptotic expansions are derived for fix N and small ε. However, there should 
not be valid in the limit N large, although stochastic simulations (figures 3(a) and (b)) 
shows that the range validity is broader than expected. The exact asymptotic formula for 
any two monomers inside a polymer chain should be derived. Other scaling laws have been 
derived in [70].
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7.  Diffusion approximation by jump processes and model of a membrane 
crowded with obstacles

Smoluchowski equation has also been used to analyse diffusion in crystal or crowded medium 
such as cellular membrane. The approach consists of approximating diffusion jump process 
as continuous diffusion, valid at a much coarser-time scale than the continuous process itself. 
This approximation allows deriving asymptotic formula and interpreting data [57]. The trans
ition between diffusion at a molecular level and sub-cellular level correspond to changing 
scale and is obtained by coarse-graining a model of disk obstacles using the narrow escape 
theory into a Markov process, which is a continuum approximation of the diffusion equation. 
The transition between the molecular and cellular regime occurs at a time scale characterized 
by the NET and is often interpreted as anomalous diffusion.

The organization of a cellular membrane is to a large extent the determinant of the effi-
ciency of molecular trafficking of receptors to their destination. The arrival rates of these mol-
ecules at their specific destinations control their role and performance, and thus steer the cell 

Figure 3.  Mean first encounter time (MFET) for different polymer lengths and different 
values of ε. (a) MFET (three dimensions) estimated from Brownian simulations (full 
line) and compared to the theoretical MFET (equation (131)) (dashed lines). The 
parameter A3 is obtained by fitting (ε = 0.1, 0.2, 0.4). The unit is in b2/D. (b) The MFET 
(two dimensions) estimated from Brownian simulation (full lines) and compared to the 
theoretical MFET (equation (132)) (dashed lines). The parameter A2 is obtained by 
fitting (ε = − − −10 , 10 , 104 3 2) (reproduced from [73]).(c) log–log plot of the MFET in 
dimension 3.
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toward its function. After two decades of intense research on membrane organization, it is still 
unclear how the heterogeneity of the membrane controls diffusion (see figure 4). Recently, 
using single molecule tracking, the diffusion coefficient of a molecule freely diffusing on 
intact and treated neuronal membranes, cleared of almost all obstacles was found. In this case 
the diffusion of a protein on the membrane is described by the Saffman–Delbrück theory. If, 
however, the membrane is crowded with obstacles, such as fixed proteins, fences and pickets, 
and so on, the effective diffusion coefficient differs significantly from that predicted in and 
depends strongly on the degree of crowding. The latter can be estimated from diffusion data 
and from an appropriate model and its analysis, as explained below. The key to assessing the 
crowding is to estimate the local diffusion coefficient from the measured molecular trajecto-
ries and the analytic formula for the MFPT through a narrow passage between obstacles.

7.1.  A coarse-grained model of membrane crowding organization

A simplified model of a crowded membrane can be a square lattice of circular obstacles of 
radius a centered at the corners of lattice squares of side L (figure 5). The mean exit time from 
a lattice box, formula (82), is to leading order independent of the starting position (x,y) and 
can be approximated as

4
,4̄

¯τ
τ

=� (133)

where τ̄ is the MFPT to a single absorbing window in a narrow strait with the other windows 
closed (reflecting instead of absorbing). It follows that the waiting time in the cell enclosed by 
the obstacles is exponentially distributed with rate

1

2
,

4¯λ
τ

=� (134)

Figure 4.  Organization of a neuronal membrane [65] (courtesy of Kusumi) containing 
microdomains made of overlapping filaments.
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where τ̄ is given by (80) and (82) as
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with L a a2( )/ε = −  and d d O, 11 2 ( )=  for 1ε�  (see figure 5). The MFPT c1 from the center 
to the boundary of an unrestricted square is computed from
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so c u L L L D2, 2 4 cosh 2 1 cosh .1
2 3( / / ) [ / ][ ( / )/ ]π π π= ≈ −  For L  =  1, D  =  1, we find c 0.0761≈ , 

in agreement with Brownian dynamics simulations (figure 5(B)). The coefficient c2 is obtained 
from (78) as c D1 2 0.16.2 / π= ≈  Similarly, the coefficient c3 is obtained from (82) as 
c D4 2 0.56.3 /π≈ ≈  The coefficients di are chosen by patching τ̄ continuously between the 
different regimes:

d c c r rlog 1 2 ,1 1 2 1 1( ) ( )= + |Ω | −� (137)

and

[ ]( ) ( ) ( ) ( )
( ) ( ) /

= − |Ω | − + |Ω | −

− |Ω | − −

d c c r r r r

c r r

log 1 2 log 1 2

1 2 ,

2 1 2 1 1 2 2

3 2 2
1 2

where r L r2 2( ) π|Ω |= − .
Simulations with D  =  1 in a square of radius L  =  1 with four reflecting circles of radius 

r, centered at the corners, show that the uniform approximation by the patched formula (135) 
is in good agreement with Brownian results (figure 5(b)), where the statistics were collected 
from 1000 escape times of Brownian trajectories per graph point. The trajectories start at the 
square center. Equation (135) holds in the full range of values of a L0, 2[ / ]∈  and all L.

Figure 5.  NET versus scaled radius of obstacles. NET from the domain (a) with D  =  1, 
L  =  1. Statistics were obtained from 1000 exit times/point of simulated Brownian 

trajectories (dashed line). (b) NET versus obstacle scaled radius / ( )ε= = −r a L 11

2
. 

The simulated (dotted curve) and analytical approximation (135) (continuous curve) for 
0  <  r  =  r1  =  0.2, < < =r r r 0.451 2 , and 0.45  <  r  <  0.5 [15].
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The Brownian motion around the obstacles (figure 5(a)) can be coarse-grained into a 
Markovian jump process whose state are the connected domains enclosed by the obstacles 
and the jump rates are determined from the reciprocals of the mean first passage times and exit 
probabilities. This random walk can in turn be approximated by an effective coarse-grained 
anisotropic diffusion. The diffusion approximation to the transition probability density func-
tion of an isotropic random walk that jumps at exponentially distributed waiting times with 
rate λ on a square lattice with step size L is given by [18]
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7.2.  Diffusion of receptors on the neuronal membrane

The results of the previous section can be used to estimate the density of obstacles on the 
membrane of cell such as a neuronal dendrite. The effective diffusion coefficient of a receptor 
on the neuronal membrane can be estimated from the experimentally measured single receptor 
trajectory by a single particle tracking method. The receptor effective diffusion coefficient of 
a receptor varies between 0.01 and 0.2 μm2/sec.

In the simplified model of crowding, the circular obstacles are as in (figure 5). Simulated 
Brownian trajectories give the MFPT from one square to the next one as shown in figure 4, 
where L is fixed and a is variable. According to (135), (134) and (138), as a increases the effec-

tive diffusion coefficient D̄ decreases. It is computed as the as the mean square displacement 

(MSD) MSD t

t4
⟨ ⟩( ) . Brownian simulations show that D̄ is linear, thus confirming that in the given 

geometry crowding does not affect the nature of the Brownian motion for sufficiently long 
times. Specifically, for Brownian diffusion coefficient D  =  0.2 μm2 s−1 the time considered 
is longer than 10 s. In addition, figure 6(c) shows the diffusion coefficient ratio D Da 0/ , where 
Da is the effective diffusion coefficient of Brownian motion on the square lattice described 
above with obstacles of radius a. For a  =  0.3 the value D D 0.7a 0/ ≈  is found whereas a direct 
computation from the mean exit time formula (135) gives

c

c dlog
0.69,
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0 1

2
1
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τ
τ
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|Ω| +
≈

ε
� (139)

where L a L2 0.4( )/ε = − = .
It can be concluded from the Brownian simulations that the coarse-grained motion is plain 

diffusion with effective diffusion coefficient D Da a0 0/ /τ τ= , which decreases nonlinearly as a 
function of the radius a, as given by the uniform formula (135). Figure 6 recovers the three 
regimes of (135): the uncrowded regime for a  <  0.2L, where the effective diffusion coefficient 
does not show any significant decrease, a region 0.2L  <  a  <  0.4L, where the leading order 
term of the effective diffusion coefficient is logarithmic, and for a  >  0.4L the effective diffu-
sion coefficient decays as L a L2( )/− , in agreement with (135).

Finally, to estimate the density of obstacles in a neuron from (135), (134) and (138), a refer-
ence density has to be chosen. The reference diffusion coefficient is chosen to be that of recep-
tors moving on a free membrane (with removed cholesterol), estimated to be D0.17 0.2⩽ ⩽  
μm2 s−1 [14], while with removing actin, the diffusion coefficient is 0.19 μm2 s−1. The refer-
ence value D  =  .2 μm2 s−1 gives an estimate of the crowding effect based on the measured 
diffusion coefficient (figure 6(d)). The reduction of the diffusion coefficient from D  =  0.2 
μm2 s−1 to D  =  0.04 μm2 s−1 is achieved when 70% of the membrane surface is occupied 
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by obstacles. Thus obstacles impair the diffusion of receptors and are therefore responsible 
for the large decrease of the measured diffusion coefficient (up to 5 times). To conclude, as 
illustrated in figure 7, diffusion in a crowded membrane involves various time regimes: at 
very short time scale, before a Brownian particle has the time to escape between small aper-
ture near obstacles, the particle diffuses freely, characterized by the homogeneous membrane 
diffusion coefficient. This approximation is valid before the NET time scale is reached (see 
formula (82)). For longer time, t τ̄� , the motion of a Brownian particle is characterized again 
by a diffusion process, but now the diffusion coefficient does account for the obstacles and in 
the very density limit, the effective diffusion coefficient is given by

D D
L

L R

L R

R
R L

2

2
, for 2.e

2

2 2( )
    ⩽ /

π π
=

−
−

� (140)

Figure 6.  Organization of the neuronal membrane. (a) Schematic representation of a 
Brownian particle diffusing in a crowded microdomain. (b) Mean square displacement 
(MSD) of the particle in a domain paved with microdomains. The MSD is linear, 
showing that crowding does not affect the nature of diffusion. The effective diffusion 
coefficient is computed as ¯ ⟨ ( )/ ⟩→= ∞D MSD t tlim 4t  for D  =  1. (c) The effective 
diffusion coefficient computed from the MSD for different radiuses of the obstacles. 
Brownian simulations (continuous curve): there are three regions (separated by the 
dashed lines). While there is no crowding for a  <  0.2, the decreasing of the effective 
diffusion coefficient for 0.2  <  a  <  0.4 is logarithmic, and like square root for a  >  0.4. 
(d) Effective diffusion coefficient of a particle diffusing in a domain as a function of the 
fraction of the occupied surface. An AMPAR has a diffusion coefficient of 0.2 μm2 s−1 
in a free membrane (reproduced from [15]).
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At an intermediate time regime between the two extreme cases described above, a stochastic 
particle is hopping from one square to another, characterized as anomalous diffusion (blue 
curves in figure 7).

8.  Jump processes for a model of telomere length dynamics

Stochastic jumps are inherent to physical and biological processes that can be studied in vari-
ous limits (diffusion approximation [18]). We review here the example of a telomere (end of a 
chromosome) model introduced in [75, 76], in which the length x of the telomere can decrease 
or increase at each division.

The length x decreases by a fixed length a with probability l(x) or, if recognized by a poly-
merase, it increases by fixed length b with probability r(x)  =  1  −  l(x). The jump probability 
r(x) is a decreasing function of x with r(0)  =  1. Thus the length of the telomere at division n is 
an asymmetric random walk x(n). In this simplified model, the maximal length of a telomere 
is L b� . When the length falls below a critical value T, cell division stops.

8.1. The asymmetric random jump model

The model of the telomere dynamics is

x
x a l x

x b r x

w.p.

w.p. ,
n

n n

n n
1

  ( )

  ( )⎪
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+� (141)

where the right-probability r(x) can be approximated by

r x
x

1

1
,( )

α
=
+

� (142)

for some 0α> . Scaling x y Ln n=  and setting b L/ε = , the dynamics (141) becomes

Figure 7.  Summary of MSD for diffusion in a crowded membrane. There are two 
normal diffusion regimes, separated by a transient regime, which exhibits an apparent 
anomalous diffusion due to the transition between obstacles.
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where l y l x˜( ) ( )=  and T b y 1/ε < < . In the limit 1ε� , the process yn moves in small steps. 
The dynamics (143) falls under the general scheme (see [18])

y y ,n n n1 εξ= ++� (144)

where

y y y y w yPr , , , ,n n n 1 1{ } ( )ξ ξ ξ ε= | = = … = |−� (145)

ε is a small parameter, and y0 is a random variable with a given pdf p0( y ). In the case at hand 
the function w y( )ξ |  defined in (145) is given by
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The pdf of yn satisfies the backward equation for 0  <  x  <  1
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The first conditional jump moment, m y al y b r y1( ) ˜( )/ ˜( )= − +  changes sign at z b L a0 / α= , 
so p y n,( )ε  converges to a quasi-stationary density p y( )ε  for large n, before the trajectory yn is 
terminated at y  =  T/L.

One dimensional processes (see equation (144)) in the small jump limit is described in [18] 
p 236 and p 303, see also [79–81]. In this limit, the Kramers–Moyal approximation consists in 
expanding in ε and then approximating equation (147) by a direct truncation to a second order 
equation. The method is equivalent to construct a stochastic processes with the first and sec-
ond moments that match the coefficients of the Kramers–Moyal approximation. We present 
below the WKB construction of an approximated solution.

8.2.  Construction of the quasi steady-state density εp y( )

The structure of the quasi-stationary solution p y( )ε  for 1ε�  and y ε> , can be obtained in the 
WKB form [18]

p y K y
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where
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( ) ( )∑ ε=ε
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� (149)

and Ki( y ) are chosen such that p y( )ε  is normalized. The components of the expansion (148) 
are found by solving the eikonal equation for y( )ψ

w ye 1 , 0 d 0,y[ ] ( )( )
R∫ ξ ξ− | =ξψ′� (150)
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which for the problem at hand takes the form
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At the next order in ε, we find that K0( y ) is the solution of the ‘transport’ equation
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Equation (152) has a removable singularity at y  =  z0, because the coefficient of K0y in (152),
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vanishes linearly at z0. However, the coefficient of K0( y ) in (152) also vanishes at z0.

8.3.  Extreme statistics for the shortest telomere

In this section, we present a different approach for computing the steady solution of the pdf 
for the process (141). We derive the Takacs equation and then study the statistics of the short-
est trajectory (shortest telomere) for an ensemble of n identical independently distributed (iid) 
processes.

The steady state distribution associated to the telomere equation (141) can be rescaled with 
a constant drift for shortening, and possible large jumps with exponential rates for elonga-

tion. The jump rate function becomes X
BX

1

1
( )λ =

+
, and the probability for the jump ξ̄  is 

given by Pr y b ye y( ¯ ) ( )ξ θ= = =θ− , where B aβ=  and apθ = . The pdf f x t F x t x, ,( ) ( )/= ∂ ∂  
where F x t X t x, Pr( ) { ( ) ⩽ }=  satisfies the Takacs equation, which is written for the forward 
Fokker–Planck equation x  >  0,
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The stationary distribution function is [76]
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where s x t t, e d
x

s t1( ) ∫Γ =
+∞ − −  is the upper incomplete Gamma function. Now the distribu-

tion of the shortest telomere [76] in an ensemble of 2n telomeres, corresponding to a total of 
n chromosomes (16 in yeast and n is in the range of 36–60) is estimated when their lengths 
are independent identically distributed variables L L L, , n1 2 2… . Considering 2n iid variables 
X X, n1 2…  following a distribution f, the pdf of the minimum X X X Xmin , ,n n1:2 1 2 2( )( ) = …  is 
given by

f x n F x f x2 1 ,X
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where F x f u du
x

0
( ) ( )∫= . The statistical moments X x f x xdn

k k
X1:2 + n1:2

¯ ( )( ) ( )R∫=  are given by
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When f is a Gamma distribution of parameter α and n sufficiently large, X n
k
1:2

¯ ( ) can be esti-
mated using the Laplace’s method.
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Using formulae (155)–(157), the pdf and the moments of the shortest telomere length L1:2n for 
k  =  1 can be estimated and the shortest telomere length is
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Using the values p  =  0.026, 0.045β =  (B  =  0.16  <  0.5) and L0  =  90 (yeast) and equa-
tion (156) for k  =  1 and 2, the mean shortest telomere length is 184 25±  bps.

To estimate the gap between the shortest telomere and the others, we shall compute the 
distribution of the second shortest length X(2:2n). The pdf fX n2:2( )

 of X(2:2n) is given by

f x n n F x F x f x2 2 1 1 ,X
n2 2

n2:2
( ) ( ) ( )( ( )) ( )

( )
= − − −� (159)

and the statistical moments X n
k
2:2

¯ ( ) satisfy the induction relation
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Using equation (157) for k  =  1, we obtain that the ratio 
X

X
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To conclude, for a pdf with a nonzero first order derivative at 0, this ratio is a universal number 
3

2
. In the case of yeast, equation (160) reveals that the mean length of the second shortest telo-

mere is 207 bps. Thus, the shortest telomere is on average 22 bps shorter than the second one. 
This gap results from the statistical property of the telomere number and dynamics and should 
exist in all species. It suggests that the length of the shortest telomere controls the number of 
division. The computation of the mean time to threshold is more involved as it requires finding 
an approximation of the pdf in two time intervals. Interestingly, this time depend on the escape 
of a coarse-grained stochastic dynamics from an effective potential [84].

9.  Hybrid discrete-continuum modeling for stochastic gene expression within 
a autoregulatory positive feedback loop

We end this tribute to Smoluchowski by a description of stochastic modeling of gene activation 
and regulation. The difficulty in such modeling is the presence of the continuum and discrete 
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description to account for few mRNA (discrete) and large synthesized proteins (continuum). 
Gene expression is often model by classical Mass-Action laws with additive noise. We pres-
ent here an alternative approach based on Markov jump processes and we the large number 
approximation to simplify the equation. The result is a hybrid continuum-discrete ensemble 
of equations that can give different predictions than classical model. The model is applied to a 
positive feedback loop of gene regulation based on a transcription factor called Krox20 [85].

We recall that proteins are produced by mRNAs. Sometimes such mechanism involves a 
feedback control of the proteins on the gene to regulate the mRNA production. For a positive 
feedback, the produced proteins bind the gene sites to activate the mRNA production. A tran-
scription factor such as Krox20 positively regulates its own expression and results in a bistable 
switch: either proteins are expressed or not. The model is also used to extract parameters from 
data and predict the level of expression inside a cell population. Krox20 is involved in the 
hindbrain anterior-posterior identity, where 7–8 segments called rhombomeres are formed 
and the transcription factor is required for the particular construction of rhombomeres 3 and 
5. The stochastic model of Krox20 expression is based on the interaction between mRNA and 
proteins, cooperative binding/unbinding of Krox20 proteins to four binding sites on the DNA 
called A (figure 8). The difficulty in such a model is that only a few mRNA molecules are 
involved in the activation process, which is coupled to a continuous description of proteins.

9.1.  Stochastic model of gene activation

To compute the number of proteins, we need to follow simultaneously three variables: the 
state s of element A, the number m of Krox20 mRNA and the number n of unbound Krox20 
proteins. The joint probability ps(m,n,t) to find element A in state s with m Krox20 mRNA 
molecules and n free Krox20 proteins is

p m n t Pr s t s mRNA t m Krox t n, , , , 20s( ) { ( ) ( ) ( ) }= = = =� (162)

and it satisfies a Master equation [18], where only one binding or unbinding occurs at a time
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Figure 8.  Representation of Krox20 expression in two phases: a first phase lasts for tI 
minutes and the production involves both a Krox20-independent initiation process and 
the autoregulatory loop, whereas only autoregulation is maintained afterwards [85].
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The mRNA production rate is given function

t t ts I I A s,( ) ( )θΦ = Φ − + Φ� (164)

where t( )θ  is the Heaviside function. There function models an initial phase where proteins 
are produced until time tI. During this phase, mRNA is produced with a Poissonian rate IΦ  by 
an external molecule. Each mRNA protein is degraded with a Poissonian rate Ψ. Proteins are 
produced with a Poissonian rate φ and are degraded with a rate ψ and can bind to a promoter 
site that has Nb  =  4 binding sites. The state of A is characterized by s  =  0, 1, 2, 3, 4 bound 
molecules. The autoregulatory production of mRNA occurs with Poissonian rates A s A s, ξΦ = Φ  
that depend on state s, where AΦ  is the maximal production rate and sξ  describes the modula-
tion due to the state of element A. Binding and unbinding of proteins to A are described by 
state dependent binding and unbinding rates sλ  and sμ .

When the change in the number of free Krox20 proteins n due to binding and unbinding 
to element A is neglected, in the limit n Nb� , the Master equation (163) can be approxi-
mated by
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The first line in equation (165) describes the production and degradation of a mRNA, while 
the second is for the production and degradation of a Krox20 protein. The last one is for the 
binding and unbinding of a Krox20 protein to element A. The marginal probabilities is

p m n t p m n t p m n t, , , , , , .s
s

N

s s
s

N

s s
0

,
0

,

b b

( ) ( ) ( )∑ ∑= =
= =′

′
′

′� (166)

Binding and unbinding to element A is fast compared to the turn over of proteins, thus we use 
the approximation

≈p m n t p m n t p n, , , , ,s s( ) ( ) ( )� (167)

where ps(n) are the steady-state probabilities to find element A in state s for a given number of 
Krox20 proteins n, and p(m,n,t) is the probability to find m mRNA molecules and n proteins 
at time t.

The steady state condition for binding and unbinding from equation (165) is

( ) ( )μ λ=+ +p n n p n ,s s s s1 1� (168)

leading to the solution
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where
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The effective mRNA production rates is defined by
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At this stage, the approximated Master equation for the joint pdf p(m,n,t) is
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The marginal probabilities for mRNA molecules, Krox20 proteins and the state of element A are
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It remains difficult to study equations (172) because n can be large while m is of the order 
of few and thus there is no clear limit approximations. The long-time asymptotic is however 
an important quantity to estimate and in particular how it depends on initial conditions. This 
limit tells us whether or not a cell expresses Krox20. The diffusion approximation leads to 
a dynamical system that predicts a two state attractors characterized by full or zero expres-
sion, while the Master system shows that there is be a continuum level of expression, but 
the distribution is dominated by two peaks. This difference justifies the need of a Markov 
chain description, in particular to study cells at the boundary between regions, where a graded 
expression is predicted.

9.2.  Mean-field approximation

The mean field approximation for the mean quantities is based on the scaled variables

t m
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and the normalized parameters are
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where the average values m0 and n0 characterize the mRNA and proteins when element A is 
fully activated. The mean-field equation in the scaled variables m̂ and n̂ is expressed using the 
function
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Indeed, the Kramers–Moyal expansion of equation (172) is
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From truncating the series at first order and neglecting the initiation ( 0χ = ), we obtain the 
first order dynamical system, which is the mean-field equation [18]:
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The fixed points are given by n mˆ ˆ=∗ ∗ in equation (178). When 0χ = , there is a minimal value 
33.8minα ≈  for which minα α< , there is a single fixed point m 0ˆ =∗  ( minα , computed using the 

solution z0 of f x

f x x

1( )
( )
=′ . The minimum value is z

f z f zmin
10

0 0( ) ( )
α = =

′
).

For minα α> , there are two stable fixed points m1ˆ ∗ and m3ˆ ∗ and an unstable saddle point m2ˆ ∗ 
(figure 9 Upper). For large α, the asymptotic values are m 02ˆ →∗  and m 13ˆ →∗ . The value m 13ˆ ≈∗  

(m m m3 0 3
Aˆ= ≈ φ∗ ∗
Ψ

) corresponds to the situation where element A is fully activated (figure 9).
The two stable fixed points defines two basins of attraction and a saddle point for minα α> , 

contained in a separatrix (figure 9 Upper for 40α = ). For an initial conditions outside the 
basin of attraction of the fixed point m1ˆ ∗, the dynamics evolves towards the Up attractor (a high 
protein expression level). In contrast, for a small amplitude initiation, the expression vanishes. 
In figure 9 (Upper left) shows the separatrix for different values of α: with increasing α the 
basin of attraction of m 01ˆ =∗  shrinks and asymptotically vanishes for large α. In summary, the 
mean field dynamical system underlying protein activation shows a bistable behavior between 
two attractors depending on the initial condition, which can be seen as a random variable In 
contrast, the numerical analysis of the Master equation (172) for the probability p(m,n,t) with 
the scaled variables m̂ and n̂, p m n t, ,( ˆ ˆ ) for p(m,n,t) uses the marginal probabilities defined in 
equation (173). The mean values for m̂ and n̂ are given by
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In [85], the analysis reveals that for 0.13β>  the probability distribution p n( ˆ) at time t 500 min=  
is bimodal with peaks at zero and close to one (figure 9 Lower panel). To conclude, simulating 
the Master equations reveals a continuum of steady state characterized by two peaks, while 
the mean field approximation predict a bistable distribution, where the dynamics can fall into 
one of two attractors. More stochastic analysis is expected to reveal in the future how gene 
expression regulate development, boundary between brain regions [86] or diseases.
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= 150

Figure 9.  Mean-field modeling of protein activation Upper: Left, Phase-space analysis. 
Fixed points of the deterministic system. For α α> ≈ 33.8min , the two attractors are 
characterized by two stable fixed points (black and blue) and a saddle point (red) located 
on the separatrix. Blue trajectories converge to the high expression level, whereas 
low proteins expression is found in the other basin of attraction (black trajectories), 
separated by a separatrix (red curve). Right: the separatrix is shown for various values 
of α. The basin of attraction of the fixed point ˆ ˆ= =∗ ∗m n 0 shrinks with increasing α. 
Lower pannel ((A)–(C)) Time-dependent probability of the different states of element 
A (s  =  0, 1, 2, 3 or 4), for three different levels of initiation. ((D)–(F)) Evolution of the 
probability distribution for the number of proteins with initiation as in ((A)–(C)). Insets 
are magnification for protein numbers. ((G)–(I)) Stochastic simulations for the number 
of proteins. Results in panels (A)–(F) were obtained by integrating the Master equation. 
The molecular dynamics simulations in (G)–(I) are obtained from the Master equation, 
using the Gillespie algorithm [85].
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10.  General conclusion and perspective

We reviewed here the influential Smoluchowski equation and its applications in modeling, 
analysis in biophysics and computational cell biology. In general stochastic processes have 
now become the framework for extracting features from molecular and cellular large data 
sets. In that context, the Narrow Escape Theory is a coarse-graining procedure revealing 
how structures (geometry) controls physiology through time scales and rare random events. 
The Smoluchowski equation is also the basis for analysis super-resolution data and obtained 
deconvolution algorithms for extracting biophysical parameters [56]. The analysis of diffusion 
with obstacles reveals how narrow passage between obstacles defines the effective measured 
diffusion.

Polymer models allow computing looping rates used to interpret large data about the posi-
tion of chromosomes inside the cell nucleus. We also illustrated stochastic processes in sys-
tem biology by presenting a stochastic model that couples continuum and discrete levels. 
Stochastic gene activation, mRNA and protein productions remain an exciting field where the 
model analysis remains difficult due to the large degree of freedom (large parameter space). 
A general framework to extract parameters and study feedback loop in gene activation is still 
to be found.

Although stochastic chemical reactions are now routinely simulated using the classical 
Gillespie’s algorithm, exploring the parameter space can be done when possible using asymp-
totic formulas, derived from the model equations. Another area that we have not reviewed 
here is the recent development of aggregation-dissociation with a finite number of particles. 
Smoluchowki fragmentation-aggregation model is an infinite set of equations that described 
colloids in solution and other molecular aggregations. However, aggregation with a finite 
number of particles to study viral capsid formation and telomere dynamics in the nucleus 
requires a different probability framework than infinite set of equations [82, 83], leading to 
novel quantity to estimate such as the time spent by two particles in the same cluster.
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